Biomechanical analysis of conditions of the functioning of knee endoprosthesis in valgus deformities in patients with rheumatoid arthritis

I.A. Lazarev, A.M. Babko, E.M. Avtomeenko, M.V. Skiban

Abstract


Background. The defeat of the knee joint in rheumatoid arthritis (RA) is accompanied by the formation of contractures and the development of discordant deformities of the lower limbs, which, in turn, lead to a partial or complete loss of limb function. Analysis of the data of domestic and foreign literature suggests that the issue of pathogenesis and mechanogenesis of frontal deformities of the knee joints in patients with RA is not paid enough attention, conditions for the functioning of the knee endoprosthesis in the presence of valgus and varus deformities of the limb in RA patients have been poorly studied. The purpose was to study the possibilities of functioning of the knee endoprosthesis with compensation of the tibial condyle defects by bone grafts or metallic augments in patients with rheumatoid arthritis and lower limbs valgus deformity, to study the function and stability of “bone — endoprosthesis” biomechanical model when compensating external tibia defect by bone graft or metal augmentation of 5, 10 and 15 mm. Materials and methods. On the basis of CT scans, 3D models of the knee were created. Using SolidWorks software package, simulation models of the knee in the conditions of its valgus deformation with the presence of 5, 10 and 15 mm bone graft and metal (augment) consisted of elements with different mechanical properties — the femur, femoral component of the endoprosthesis, polyethylene insert, tibial component of the endoprosthesis and the tibia have been created. Further calculations of the model’s stress-strain state were carried out by the finite element method in the ANSYS software package. Results. Under the load, the presence of 5–10–15 mm bone graft resulted in an increase of about 20 % in the stress on the femoral bone, with the localization at the contour of contact with the femoral component of endoprosthesis. At the tibial component of the endoprosthesis, stress values increased by 77 % in the presence of 5 mm bone graft, but gradually decreased to 66 % with an increase of its size to 15 mm. At the tibia, the presence of 5–10–15 mm bone graft resulted in almost 2-fold increase in stress values, with localization in the meta-adjacent zone of cortical bone. The main increase in the stress occurred at the tibial plateau, with the localization at the contour of contact with the tibial component of endoprosthesis, where the presence of the bone graft resulted in stress increase from 65 %, if its size was 5 mm, to up to 3-fold increase with size of 15 mm. Under the load, the presence of 5 and 10 mm metal augment to replace the lateral tibial defect resulted in an increase by 20 % in the stresses on the femur, followed by a decrease of up to 5 %, if augment size was 15 mm. At the femoral component of the endoprosthesis, in the presence of a 5–10–15 mm metal augment, the values of stress decreased by 37–40 %.
The presence of 5, 10 and 15 mm metal augment at the tibial component of the endoprosthesis resulted in a significant increase in stress indices — by 9, 10 and 12 times, respectively. At the tibia, the presence of 5 and 10 mm metal augment resulted in an increase in stress values by 95–97 %, and with 15 mm graft — by 69 %. The presence of 5 mm metal augment and increase in its size up to 10 and 15 mm resulted in corresponding increase in stresses by 38, 10 and 8 % at the tibial plateau. Conclusions. The growth of stress at the tibial plateau with exceeding of the maximum permissible values, when using bone grafts of 10 and 15 mm, is a factor for the development of the tibial component instability. To replace the defect of the external condyle of the tibia up to 6.1 mm, it is advisable to use bone graft. Larger size defects require using a metal augment.


Keywords


rheumatoid arthritis; knee joint; valgus deformity; finite element modeling; stress-strain state

References


Ганджа І.М., Коваленко В.М., Лисенко Г.І., Свінціцький А.С. Ревматологія: Підручник. — 2011. — 43 с.

Герасименко С.І. Ортопедичне лікування ревматоїдного артриту при ураженнях нижніх кінцівок. — Київ: Преса України, 2000. — 159 с.

Accuracy of image-free computer navigated total knee arthroplasty is not compromised in severely deformed varus knees / Maniwa K., Ishibashi Y., Tsuda E. et al. // J. Arthroplasty. — 2013. — Vol. 28(5). — P. 802-806.

Annual trends in knee and hip arthroplasty in rheumatoid arthritis 1998–2007 / Manrique Arija S., López Lasanta M., Jiménez Núñez F.G. et al. // Reumatol. Clin. — 2011. — Vol. 7(6). — P. 380-384.

Эндопротезирование крупных суставов нижних конечностей, при их одновременном поражении, у больных ревматоидным артритом / С.И. Герасименко, М.В. Полулях, А.С. Герасименко / Материалы IV Евразийского конгресса травматологов-ортопедов (Бишкек, 27–30 авг. 2014 г.) // Центр.-Азиат. журн. серд.-сосуд. хирургии. Спецвып. — 2014. — № 12. — С. 199-200.

Особливості ендопротезування колінних суглобів при нестабільності в сагітальній площині / Зазірний І.М., Євсєєнко В.Г. // Збірник наукових праць ХV з’їзду ортопедів-травматологів України. — Дніпропетровськ: Ліра, 2010. — С. 169.

Зміни динамічних характеристик у суглобах нижньої кінцівки до та після ендопротезування колінного суглоба у хворих на ревматоїдний артрит / Герасименко С.І., Полулях М.В., Рой І.В. та ін. // Травма. — 2015. — Т. 16, № 5. — С. 53-58.

Опыт 500 тотальных эндопротезирований коленного сустава / Чрагян Г.А., Загородний П.В., Нуждин В.И. и др. // Вестник травматол. и ортопедии им. Н.Н. Приорова. — 2012. — № 2. — С. 40-47.

Особливості формування контрактур та деформацій великих суглобів нижніх кінцівок у хворих на ревматоїдний артрит / Герасименко С.І., Полулях М.В., Бабко А.М. та ін. // Актуальні питання сучасної ортопедії та травматології: Мат-ли ІІ Укр. наук. симпоз. з біомеханіки. — Дніпропетровськ, 2015. — С. 111-112.

Clinical comparison of valgus and varus deformities in primary total knee arthroplasty following midvastus approach / Chou P.H., Chen W.M., Chen C.F. et al. // J. Arthroplasty. — 2012. — Vol. 27(4). — P. 604-612.

Complex Primary Total Knee Arthroplasty: Long-Term Outcomes / Martin J.R., Beahrs T.R., Stuhlman C.R., Trousdale R.T. // J. Bone Joint Surg Am. — 2016. — Vol. 98(17). — P. 1459-1470.

Effects of Reduction Osteotomy on Gap Balancing During Total Knee Arthroplasty for Severe Varus Deformity / Niki Y., Harato K., Nagai K. et al. // J. Arthroplasty. — 2015. — Vol. 30(12). — P. 2116-2120.

Fewer and older patients with rheumatoid arthritis need total knee replacement / Skyttä E.T., Honkanen P.B., Eskelinen A. et al. // Scand. J. Rheumatol. — 2012. — Vol. 41(5). — P. 345-349.

Біомеханічний аналіз умов функціонування ендопротеза колінного суглоба при варусних деформаціях кінцівки у хворих на ревматоїдний артрит / І.А. Лазарев, Є.М. Автомєєнко, А.М. Бабко та ін. // Травма. — 2017. — Т. 18, № 6.

Maganaris C.N. Paul J.P. In vivo human tendon mechanical properties // Journal of Physiology. — 1999. — 521. — 1. — Р. 307-313.

Kubichek М., Florian Z. Stress strain analysis of Knee joint // Engineering Mechanics. — 2009. — 5(16). — Р. 315-322.

http://www.camelotplast.ru/info/polietilen-visokogo-dav-leniya.php

Сompressive strength of tibial cancellous bone // Hvid I., Christensen P., Andergaard J., Christensen P.B., Larsen C.G. // Acta Оrthop. Scand. — 1983. — 54. — Р. 819-825.




DOI: https://doi.org/10.22141/1608-1706.1.19.2018.126665

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта