DOI: https://doi.org/10.22141/1608-1706.3.19.2018.136402

Biochemical markers of blood serum in rabbits after experimental posterolateral lumbar fusion with autologous platelet-rich fibrin

V.O. Radchenko, O.V. Palkin, V.A. Kolesnichenko, D.V. Morozenko

Abstract


Background. The study of serum biochemical markers allows assessing indirectly the process of bone tissue reparative regeneration activity. The objective was to study the markers of mineral metabolism and the connective tissue metabolism in the blood plasma of rabbits after experimental posterolateral lumbar fusion using various grafts. Materials and methods. Monosegmental posterolateral lumbar fusion was performed in 42 mature California males rabbits aged 4–5 months, which were divided into 6 groups (7 animals each). In the control group 1, grafts were not applied; there were used: group 2 — local autograft, group 3 — local autograft with platelet­rich fibrin (PRF), group 4 — allograft from iliac crest, group 5 — allograft from iliac crest with PRF, group 6 — PRF. Biochemical markers in the blood plasma (total protein, glycoproteins, chondroitin sulfates, β­lipoproteins, alkaline phosphatase activity, total calcium, phosphorus) were evaluated twice: 1) to obtain normative indices in intact animals 5–7 days before surgery (Nint group); 2) eight weeks after the fusion before rabbits were sacrificed. Results. The content of total protein, calcium and phosphorus was within the physiological norm for these animal species. In all experimental groups, the level of glycoproteins, chondroitin sulfates, β­lipoproteins, the activity of alkaline phosphatase were increased. Conclusions. The results in groups using bone allografts and local autografts combined with PRF were most similar with the level of studied biochemical markers of the rabbits from the intact group; the greatest differences were found in the control group, where the decortication of the transverse processes was performed without using grafts.


Keywords


experimental monosegmental posterolateral lumbar fusion; rabbits; local autografts; allografts; autologous platelet-rich fibrin; biochemical studies

References


Schimandle J.H. Spine update. The use of animal models to study spinal fusion / J.H.Schimandle, S.D.Boden // Spine (Phila Pa 1976). - 1994. - Vol. 19. - P. 1998–2006.

Ghodasra J.H. Factors influencing arthrodesis rates in a rabbit posterolateral spine model with iliac crest autograft / J.H.Ghodasra, E.L.Daley, E.L. Hsu, W.K. Hsu // Eur. Spine J. - 2014. - Vol. 23. - P. 426–434. doi: 10.1007/s00586-013-3074-0.

Reliability of the rabbit postero-lateral spinal fusion model: A meta-analysis / A.M.Riordan, R.Rangarajan, J.W.Balts [et al.] // J. Orthop. Res. - 2013. - Vol. 8. - P. 1261–1269. DOI:10.1002/jor.22359.

Zunariah B. Posterolateral intertransverse lumbar arthrodesis in the New Zealand white rabbit model: The illustration of an alternative surgical approach / B.Zunariah, Z.Zamzuri, C.S. Che Nor Zarida, A.J.Rosnani // IMJM. - 2012. - Vol. 11. - P. 19-22.

А systematic review of comparative studies on bone graft alternatives for common spine fusion procedure / C.R. Fischer, R. Cassilly, W. Cantor [et al.] // Eur. Spine J. - 2013.- Vol. 22.- P. 1423-1435. doi: 10.1007/s00586-013-2718-4.

Evaluation of autologous platelet concentrate for intertransverse lumbar fusion / G.Acebal-Cortina, M.A.Suarez-Suarez, C.Garcia-Menendez // Eur. Spine J. - 2011. - Vol. 20 (Suppl 3). - S361–S366 DOI 10.1007/s00586-011-1904-5.

European Convention on the Protection of Vertebrates, which are used for research and other scientific purposes. Strasbourg, March 18, 1986: official translation [Electronic resource] / Verkhovna Rada of Ukraine.- Official website.- (International document of the Council of Europe) .- Mode of access to the document: electronic resource: [http:// zakon.rada.gov.ua/cgi-bin/laws/main.cginreg=994_137].

Kamyshnikov V.S. Clinical and biochemical laboratory diagnostics. Reference Book: In 2 vol. Vol.1. –2nd ed.. / V.S. Kamyshnikov. – Minsk: Interpresservice, 2003. – 495 p.

Kamyshnikov V.S. Clinical and biochemical laboratory diagnostics. Reference Book: In 2 vol. Vol.2. –2nd ed.. / V.S. Kamyshnikov. – Minsk: Interpresservice, 2003. – 463 p.

Morozenko D.V. Methods of studying markers of connective tissue metabolism in clinical and experimental medicine / D.V. Morozenko, F.S. Leontieva // Young scientist: a scientific journal. – 2016. – Vol. 2(29). – P. 168–172.

Glants S. Medico-biological statistics: Trans. with English. / S. Glantz. - Moscow: Practice, 1998. − 459 p.

Ewringmann А. Leitsymptome beim Kaninchen: Diagnostischer Leitfaden und Therapie. - 3 Auflage. - Enke: Stuttgart, 2016. - 279 s.

Calcium intake, bone mineral density, and fragility fractures: evidence from an Italian outpatient population / L.Vannucci, L.Masi, G.Gronchi [et al.] // Arch Osteoporos. – 2017. – Vol. 12. – P.40. DOI 10.1007/s11657-017-0333-4.

Burckhardt P. Calcium revisited: part I / P.Burckhardt // BoneKey Rep. – 2013. – Vol. 2. – P. 433. doi: 10.1038/bonekey.2013.167.

Millán J.L. The role of phosphatases in the initiation of skeletal mineralization / J.L.Millán // Calcif Tissue Int. – 2013. Vol. 93 (4). – P. 299-306. doi: 10.1007/s00223-012-9672-8.

Harrison's Principles of Internal Medicine / J.L.Jameson, A.S.Fauci, D.L. Kasper [et al.].- 20th Edition Vol. 2.- S&P Global Inc.: New York, 2016.- P. 1512-2607.

Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses / N.J.Lakhkar, I.H.Lee, H.W.Kim [et al.] // Adv Drug Deliv Rev. – 2013. – Vol. 65 (4). – Р. 405–420. doi: 10.1589/jpts.27.2261.

Sharma U. Alkaline phosphatase: An overview / U.Sharma, D.Pal, R.Prasad // Ind J Clin Biochem. – 2014. –Vol. 29 (3). – P. 269–278. DOI 10.1007/s12291-013-0408-y.

Wittmann V. Glycoproteins: Properties. In: Glycoscience: Chemistry and Chemical Biology, 2 ed./ed. by Fraser-Reid B.O., Tatsuta K., Thiem J. / V.Wittmann. – Berlin: Springer, 2008. – P. 1771-1793. DOI 10-1007/978-3-540-30429-6.

Bone biomaterials and interactions with stem cells / C.Gao, S.Peng, P.Feng, C.Shuai // Bone Res. – 2017. – Vol. 5. – P. 150-159. doi: 10.1038/ boneres. 2017.59.

Bio-orthopaedics. A New Approach / A.Gobbi, J.Espreguerira-Mendes, J.G.Lane, M.Karahan // Berlin: Springer, 2017. – 687 p. DOI 10.1007/978-3-662-54181-4.

Kitagawa H. Biosynthetic mechanism of the bioactive sulfated glycosaminoglycans / H. Kitagawa // Yakugaku Zasshi. – 2002. – Vol. 122 (7). – P. 435-450. DOI: 10.1248/yakushi.122.435.

Klüppel M. The roles of chondroitin-4-sulfotransferase-1 in development and disease / M. Klüppel // Prog Mol Biol Transl Sci. – 2010. – Vol. 93. – P. 113-132. doi: 10.1016/S1877-1173(10)93006-8.

Kwon H. J. Chondroitin sulfate-based biomaterials for tissue engineering. Review article / H. J.Kwon, Y.Han // Turk J Biol. – 2016. – Vol. 40. – P. 290-299. doi:10.3906/biy-1507-16.

Mikami T. Biosynthesis and function of chondroitin sulfate / T. Mikami, H. Kitagawa // Biochim Biophys Acta. – 2013. – Vol. 1830 (10). – P. 4719-4733. doi: 10.1016/j.bbagen.2013.06.006.

Hoover-Plow J. Lipoprotein(a) metabolism: potential sites for therapeutic targets / J.Hoover-Plow, M.Huang // Metabolism. - 2013. - Vol. 62. - P. 479-91. doi: 10.1016/j.metabol.2012.07.024.

Kamstrup P.R. Elevated lipoprotein(a) levels, LPA risk genotypes, and increased risk of heart failure in the general population / P.R.Kamstrup, B.G.Nordestgaard // JACC Heart Fail. - 2016. - Vol. 4. - P. 78-87. doi: 10.1016/j.jchf.2015.08.006.




Copyright (c) 2018 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта