Spondylosis lumbalis formation in rabbits after bone graft and platelet-rich fibrin

V.O. Radchenko, O.V. Palkin, V.A. Kolesnichenko, N.O. Ashukina, Z.M. Danycshuk


Background. An increase in the frequency of useful fusion requires new biomaterials that increase the graft osteogenic potential. The purpose of our work was to study the bone fusion formation in experimental posterolateral spinal fusion with the use of bone allograft and local autograft and autologous platelet­rich fibrin. Materials and methods. Lumbar monosegmental posterolateral spinal fusion was performed in 42 mature males from California rabbits aged 4–5 months, which were divided into 6 groups (n = 7). In the control group 1, transplants were not used; there were used local autograft in group 2, local autograft with PRF — in group 3, allograft bone from iliac crest — in group 4, allograft bone from iliac crest with PRF — in group 5, PRF — in group 6. Results. In group 1 bone fusion in the spondylodesis zone was not found. In other groups the regenerate, which was located between the transverse processes and connected adjacent vertebrae bodies, consisted of lamellar bone, connective and cartilaginous tissues. The largest amount of lamellar bone tissue was recorded in the regeneration of rabbits of groups 2 and 3, more maturity in group 3. The most wide regenerate (p < 0.001) was found when autografts were used in combination with PRF compared to other groups. Allografts and autografts used in the experiment were not completely replaced by newly formed tissues and the process of their reconstruction continued. Conclusions. The use of plastic materials (PRF, allografts and autografts alone and in combination with PRF) with lumbar intertransverse process spinal fusion promoted the formation of fusion at the operation level.


experimental lumbar posterolateral spinal fusion; rabbits; local autograft; allograft bone; platelet rich fibrin


Danielle S., Chun B.A., Baker K.C., Hsu W.K. Lumbar pseudarthrosis: a review of current diagnosis and treatment // Neurosurg. Focus. - 2015.- Vol. 39.- P. 1 - 8. doi: 10.3171/2015.7.FOCUS15292.

Adogwa O., Verla T., Thompson P., Penumaka A., Kudyba K., Johnson K., Fulchiero E., Miller T. Jr., Hoang K.B., Cheng J., Bagley C.A. Affective disorders in uence clinical out- comes after revision lumbar surgery in elderly patients with symptomatic adjacent-segment disease, recurrent stenosis, or pseudarthrosis: clinical article // J. Neurosurg. Spine. - 2014.- Vol. 21.- P. 153 – 159. doi: 10.3171/2014.4.SPINE12668.

Dede O.1., Thuillier D.1., Pekmezci M., Ames CP., Hu SS., Berven SH., Deviren V. Revision surgery for lumbar pseudarthrosis / Spine J. - 2015. - Vol. 15. - P. 977 - 982. doi: 10.1016/j.spinee.2013.05.039.

West III J.L., Bradford D.S., Ogilvie J.W. Results of spinal arthrodesis with pedicle screw fixation // JBJS. - 1991. - Vol. 73-A. - P. 1179 - 1184.

Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions // J. Orthop. Surg. Res.- 2014, 9:18 [Electronic resource] / Access mode: doi: 10.1186/1749-799X-9-18.

Dimitriou R., Jones E., McGonagle D., Giannoudis P.V. Bone regeneration: Current concepts and future directions // BMC Med. - 2011. - 10 p. [Electronic resource] / Access mode: doi:10.1186/1741-7015-9-66.

Brydone A.S., Meek D., Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering // Proc. Inst. Mech. Eng. H. - 2010. - Vol. 224. - P. 1329 – 1343.

Bhatt R.A., Rozental T.D. Bone graft substitutes // Hand Clin. - 2012. - Vol. 12. - P. 457 - 468.

Janicki P., Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells //Injury . - 2011. - Vol. 42. - P. S77–S81. doi: 10.1016/j.injury.2011.06.014.

Nandi S.K., Roy S., Mukherjee P., Kundu B,. De D.K., Basu D. Orthopaedic applications of bone graft and graft substitutes: a review // Indian J. Med. Res. - 2010. - Vol. 132. - P. 15 – 30.

Boden S.D., Martin G.J., Morone M., Ugbo J.L, Titus L., Hutton W.C. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion // Spine. - 1999. - Vol. 24. - P. 320 – 327.

Ghodasra J.H., Daley E.L., Hsu E.L., Hsu W.K. Factors influencing arthrodesis rates in a rabbit posterolateral spine model with iliac crest autograft // Eur. Spine J. - 2014. - Vol. 23. - P. 426 – 434. doi: 10.1007/s00586-013-3074-0.

Riordan A.M., Rangarajan R., Balts J.W., Hsu W.K., Anderson P.A. Reliability of the rabbit postero-lateral spinal fusion model: A meta-analysis // J. Orthop. Res. - 2013. - Vol. 8. - P. 1261–1269. DOI:10.1002/jor.22359.

Zimmermann G., Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes // Injury. - 2011. - Vol. 42. - P. S16 – S21. doi: 10.1016/j.injury.2011.06.199.

Oryan A., Alidadi S., Moshiri A. Current concerns regarding healing of bone defects // Hard Tissue. - 2013. - Vol. 2. - 13p. [Electronic resource] / Access mode:

Moshiri A., Oryan A. Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns // Hard Tissue 2012. - Vol. 1. - 11 p. [Electronic resource] / Access mode:

Stevenson S., Horowitz M. The response to bone allografts // JBJS. - 1992. - Vol. 74. - P. 939 - 950.

Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review // Bioactive Materials - 2017. - Vol. 2. - P. 224 - 247.

Folsch C., Mittelmeier W., Bilderbeek U., Timmesfeld N., von Garrel T., Peter Matter H. Effect of storage temperature on allograft bone // Transfus. Med. Hemother. - 2012. - Vol. 39. - P. 36 – 40. doi: 10.1159/000335647.

Sethi P.M., Miranda J.J., Kadiyala S., Patel T., Panjabi M., Troiano N., Friedlaender G.E. Evaluation of autologous platelet concentrate for intertransverse process lumbar fusion // Am. J. Orthop. - 2008. - Vol. 37. - P. E84 – E90.

Gupta V., Bains V.K., Singh G.P., Mathur A., Bains R. Regenerative potential of platelet rich fibrin in dentistry: literature review // Asian J. Oral Health & Allied Sci. -2011. - Vol. 1. - P. 22–28.

Mosesson M.W., Siebenlist K.R. Meh D.A. Structure and biological features of fibrinogen and fibrin // Ann. NY Acad. Sci. - 2001. - Vol. 936. - P. 11–30. DOI: 10.1111/j.1749-6632.2001.tb03491.

Dohan Ehrenfest D.M., de Peppo G.M., Doglioli P., Sammartino G. Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): A gold standard to achieve for all surgical platelet concentrates technologies // Growth Factors. - 2009. - Vol. 27. - P. 63–69. doi: 10.1080/08977190802636713.

European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. Strasbourg, March 18, 1986: Official translation [Electronic resource] / Verkhovna Rada of Ukraine. Official website. - Access mode: http: //

Sarkisov D.S. Microscopic technique / D.S. Sarkisov, Yu. L. Perov. - M.: Medicine, 1996. - 542 p.

Gezici A.R., Ergün R., Gürel K., Yilmaz F., Okay O., Bozdoğan O.The effect of risedronate on posterior lateral spinal fusion in a rat model // J. Korean Neurosurg. Soc. — 2009. — Vol. 46. — P. 45 - 51. — DOI: 10.3340/jkns.2009.46.1.45.

Popsuyshapka K.O. Determination of the platelet-rich fibrin role in the process of the vertebral body defect regeneration (experimental study) / K.O.Popsuyashapka, N.O.Ashukina, V.O. Radchenko // Orthopedics, traumatology and prosthetics. - 2017 - No. 3 (608). - P. 32-38. doi:

Copyright (c) 2018 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2019


   Seo анализ сайта