Positron emission tomography/magnetic resonance imaging — a new era of hybrid imaging (literature review)

P.O. Korol, M.M. Tkachenko


The review of the literature examines the historical aspects and key issues of the clinical use of positron emission tomography (PET)/computed tomography as a new hybrid imaging method. This review deals with problems associated with the process of PET merging with magnetic resonance imaging (MRI) and the development of these systems for many years. The paper discusses the diagnostic aspects of a multimodal image with attenuation correction and reconstruction methods for the purpose of obtaining a quantitative image. The development of PET/MRI plays an important role in the field of neurosurgery, oncology, the musculoskeletal system, etc., thus, can be considered as a modern multimodal diagnostic method of additional hybrid imaging. However, the issue of the diagnostic use of PET/MRI will require further researches on other possible ways of introducing PET/MRI for new preclinical and clinical trials.


positron emission tomography; magnetic resonance imaging; radiopharmaceutical; hybrid imaging; review


Korol P., Ponomarenko N., Shinkarenko N. Diagnostic application of bone scintigraphy and X-ray examination in the revision endoprosthetics of hip joints. Radiation diagnostics, radiation therapy. 2012; 2-3:77-79. (In Ukrainian).

Korol P.A., Tkachenko M.N. Role of bone scintigraphy in differential diagnosis of inflammatory processes of knee joints. Fundamental and applied sciences today. 2014;1:53-55. (In Ukrainian).

Tkachenko M.N., Korol P.A. Priorities choice of instrumental methods in diagnostic screening during hip arthroplasty. Radiation diagnostics, radiation therapy. 2015; 2:34-36. (In Ukrainian).

Tkachenko M., Korol P. The role of three/phase bone scintigraphy in arthroplasty of hip and knee joints of clean/up workers of Chornobyl accident. Problems of radiation medicine and radiobiology. 2017; 22:476-483. (In Ukrainian).

Abella M., Mankof D., Vaquero J.J. et al. Accuracy of CT-based attenuation correction in bone imaging with PET/CT. IEEE Nucl Sci Symp Conf Rec. 2007;6:4485–4488. doi: 10.1088/0031-9155/57/9/2477

Acharya S., Sahoo S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011; 63:170 – 183.

Atkinson D. Motion correction. Ismrm. 2011:1– 9.

Berker Y., Kiessling F., Schulz V. Scattered PET data for attenuation-map reconstruction in PET/MRI. Med Phys. 2014;41:139 – 176. doi: 10.1118/1.4894818

Boellaard R., Hofman M.B.M., Hoekstra O.S. et al. Accurate PET/MR quantification using time of flight MLAA image reconstruction. Mol Imaging Biol. 2014;16:469 – 477.

Brannon-Peppas L., Blanchette J.O. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:206 – 212. doi: 10.1016/j.addr.2004.02.014

Brix G., Nekolla E.A., Nosske D. Risks and safety aspects related to PET/MR examinations. Eur J Nucl Med Mol Imaging. 2009;36:131– 138. doi: 10.1007/s00259-008-0937-4

Catana C., van der Kouwe A., Benner T. et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J. Nucl. Med. Soc Nuclear Med. 2010;51:1431 – 1438. doi: 10.2967/jnumed.109.069112

Cherry S.R., Louie A.Y., Jacobs R.E. The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE. 2008;96:416 – 438.

Cho Z.H., Son Y.D., Kim H.K. et al. A hybrid PET-MRI: an integrated molecular-genetic imaging system with HRRT-PET and 7.0-T MRI. Int J Imaging Syst Technol. 2007;17:252 – 265.

Defrise M., Rezaei A., Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885. doi: 10.1088/0031-9155/57/4/885

Deller T.W., Khalighi M.M., Jansen F.P. et al. Imaging stability measurements during simultaneous pulsing of aggressive MR sequences on the SIGNA PET/MR system. J Nucl Med Soc Nuclear Med. 2018;59:167 – 172. doi: 10.2967/jnumed.117.194928

Delso G., Fürst S., Jakoby B. et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. Soc Nuclear Med. 2011;52:1914 – 1922. doi: 10.2967/jnumed.111.092726

der Kouwe A.J.W., Benner T., Dale A.M. Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med. 2006;56:1019 – 1032. doi: 10.1002/mrm.21038

Dikaios N., Izquierdo-Garcia D., Graves M.J. et al. MRI-based motion correction of thoracic PET: initial comparison of acquisition protocols and correction strategies suitable for simultaneous PET/MRI systems. Eur Radiol. 2012;22:439 – 446. doi: 10.1007/s00330-011-2274-4

Eiber M., Martinez-Möller A., Souvatzoglou M. et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging. 2011;38:1691– 1701. doi: 10.1007/s00259-011-1842-9

España S., Fraile L.M., Herraiz J.L. et al. Performance evaluation of SiPM photodetectors for PET imaging in the presence of magnetic fields. Nucl. Instrum Methods Phys. 2010;613:308 – 316.

Fuin N., Pedemonte S., Catalano O.A. et al. PET/MR imaging in the presence of metal implants: completion of the attenuation map from PET emission data. J. Nucl. Med. Soc Nuclear Med. 2012;63:145 – 189. doi: 10.2967/jnumed.116.183343

Gebhardt P., Wehner J., Weissler B. et al. FPGA-based RF interference reduction techniques for simultaneous PET – RI. Phys Med Biol. 2016;61:3500.

Gilbert K.M., Scholl T.J., Handler W.B. et al. Evaluation of a positron emission tomography ( PET ) – compatible field-cycled MRI. FCMRI scanner. 2009;1025:1017 – 1025.

Grazioso R., Zhang N., Corbeil J. et al. APD-based PET detector for simultaneous PET/MR imaging. Nucl Instruments Methods Phys Res Sect. 2006;569:301 – 305.

Griesmer J.J., Futey J., Ojha N. et al. Whole-body PET-MR imaging system initial calibration results. IEEE Nucl.Sci. Symp. 2010:2174 – 2176. doi: 10.2967/jnumed.115.156000

Hawkes R.C., Fryer T.D., Siegel S. et al. Europe PMC funders group preliminary evaluation of a combined MicroPET ® -MR system. Technol. Cancer Res Treat. 2015;9:53– 60.

Herbert D.J., Saveliev V., Belcari N. et al. First results of scintillator readout with silicon photomultiplier. IEEE Trans Nucl Sci. 2006;53:389 – 394.

Hintenlang D.E. Synergistic effects of ionizing radiation and 60 Hz magnetic fields. Bioelectromagnetics. 1993;14:545 – 551.

Holdsworth S.J., Bammer R. Magnetic resonance imaging techniques: FMRI, DWI, and PWI. Semin Neurol. 2008;28:395 – 406. doi: 10.1055/s-0028-1083697

Hu Z., Ojha N., Renisch S. et al. MR-based attenuation correction for a whole-body sequential PET/MR system. IEEE Nucl Sci Symp Conf Rec. 2009:3508 – 3512.

Huang S-C., Truong D., Wu H-M. et al. An internet-based“kinetic imaging system ”(KIS) for MicroPET. Mol Imaging Biol. 2005;7:330 – 341.

Jampel H.D., Friedman D., Quigley H. et al. NIH public access. Clin Res. 2009;147:39 – 44.

Jin Y., Su Y., Zhou X-H. et al. Initiative ADN, others. Heterogeneous multimodal biomarkers analysis for Alzheimer ’s disease via Bayesian network. EURASIP J Bioinforma Syst Biol. 2016:12. doi: 10.1186/s13637-016-0046-9

Johansson A., Karlsson M., Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011;38:2708 – 2714. doi:10.1118/1.3578928

Judenhofer M.S., Catana C., Swann B.K. et al. Pet/mr images acquired with a compact mr-compatible pet detector in a 7-t magnet 1. Radiology. 2007;244:807 – 814. doi: 10.1148/radiol.2443061756

Junnarkar S.S., Fried J., O’Connor P. et al. MRI compatible G-link and PCI based data acquisition hardware for the RatCAP scanner. IEEE Nucl. Sci. Symp. 2006:380 – 383.

Karp J.S., Surti S., Daube-Witherspoon M.E. et al. The bental and clinical results. Psychiatry Interpers. Biol.Process. 2009;162:214 – 220.

Keereman V., Mollet P., Berker Y. et al. Challenges and current methods for attenuation correction in PET/MR. Magn. Reson. Mater. Physics, Biol. Med. 2013;26:81 – 98. doi: 10.1007/s10334-012-0334-7

Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med. 1990;14:26 – 30.

Kolb A., Lorenz E., Judenhofer M.S. et al. Evaluation of Geiger-mode APDs for PET block detector designs. Phys Med Biol. 2010;55:1815 – 1832.

Kops E.R., Herzog H. Alternative methods for attenuation correction for PET images in MR-PET scanners. IEEE Nucl.Sci. Symp. Conf. Rec. 2007:4327 – 4330.

Levin C., Glover G., Deller T. et al. Prototype time-of-flight PET ring integrated with a 3T MRI system for simultaneous whole-body PET/MR imaging. J. Nucl. Med. Soc Nuclear Med. 2013;54:148.

Leynes A.P., Yang J., Shanbhag D.D. et al. Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Med Phys. 2017;63:145 – 189. doi: 10.1002/mp.12122

Lucas A.J., Hawkes R.C., Guerra P. et al. Development of a combined microPET ®-MR system. IEEE Nucl. Sci. Symp. Conf. Rec. 2006;5:2345 – 2348.

Martinez-Möller A., Eiber M., Nekolla S.G. et al. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J. Nucl. Med. Soc Nuclear Med. 2012;53:1415 – 1426. doi: 10.2967/jnumed.112.109348

Meechai T., Tepmongkol S., Pluempitiwiriyawej C. Partial-volume effect correction in positron emission tomography brain scan image using super-resolution image reconstruction. Br J Radiol. 2015;88:20140119. doi: 10.1259/bjr.20140119

Miyakoshi J., Yoshida M., Shibuya K. et al. Exposure to strong magnetic fields at power frequency potentiates X-ray-induced DNA strand breaks. J Radiat Res. 2000;41:293 – 302.

Mollet P., Keereman V., Bini J. et al. Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source. J. Nucl. Med. Soc Nuclear Med. 2014;55:329 – 336. doi: 10.2967/jnumed.113.125989

Mollet P., Keereman V., Clementel E. et al. Simultaneous MR-compatible emission and transmission imaging for PET using time-of-flight information. IEEE Trans Med Imaging. 2012;31:1734 – 1742. doi: 10.1109/TMI.2012.2198831

Müller-Gärtner H.W., Links J.M., Prince J.L. et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571 – 583. doi:10.1038/jcbfm.1992.81

Nel A.E., Mädler L., Velegol D. et al. Understanding biophysicochemical interactions at the nano – bio interface. Nat Mater. 2009;8:543. doi: 10.1038/nmat2442

Nuyts J., Dupont P., Stroobants S. et al. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999;18:393 – 403. doi:10.1109/42.774167

Paspulati R.M., Partovi S., Herrmann K.A. et al. Comparison of hybrid FDG PET/MRI compared with PET/CT in colorectal cancer staging and restaging: a pilot study. Abdom Imaging. 2015;40:1415 – 1425. doi: 10.1007/s00261-015-0474-0

Pichler B.J., Judenhofer M.S., Catana C. et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J. Nucl. Med. Soc Nuclear Med. 2006;47:639 – 647.

Pichler B.J., Swann B.K., Rochelle J. et al. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol. 2004;49:4305.

Popova E., Buzhan P., Pleshko A. et al. Amplitude and timing properties of a Geiger discharge in a SiPM cell. Nucl. Instrum Methods Phys. Res. 2015;787:270 – 274.

Poulin E., Lebel R., Croteau E. et al. Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET. Magn Reson Med. 2013;69:781 – 792. doi: 10.1002/mrm.24318

Rahmim A., Rousset O., Zaidi H. Strategies for motion tracking and correction in PET. PET Clin. 2007;2:251 – 266.

Raylman R.R., Majewski S., Lemieux S.K. et al. Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol. 2006;51:6371 – 6379.

Rezaei A., Defrise M., Bal G. et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging. 2012;31:2224 – 2233. doi: 10.1109/TMI.2012.2212719

Rosales R. Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents. J Label Compd Radiopharm. 2014;57:298 – 303. doi: 10.1002/jlcr.3154

Rousset O., Rahmim A., Alavi A. et al. Partial volume correction strategies in PET. PET Clin. 2007;2:235 – 249.

Schlemmer H-P.W., Pichler B.J., Schmand M. et al. Simultaneous MR/PET imaging of the human brain: feasibility study 1. Radiology. 2008;248:1028 – 1035. doi: 10.1148/radiol.2483071927

Schulz V., Torres-Espallardo I., Renisch S. et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138 – 152. doi: 10.1007/s00259-010-1603-1

Shah N.J., Mauler J., Neuner I. et al. Advances in hybrid MR – PET at 3T and 9.4 T in humans. Nucl. Instrum Methods Phys. Res. 2013;702:16 – 21. doi: 10.1016/j.jmr.2012.11.027

Shattuck D.W., Leahy R.M. BrainSuite: an automated cortical surface identification tool. Med Image Anal. 2002;6:129 – 142.

Slates R.B., Farahani K., Shao Y. et al. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. Phys Med Biol. 2015;1999:44.

Stunkard A.J. NIH public access. Psychiatry Interpers Biol Process. 2009;162:214 – 220.

Theysohn J.M., Maderwald S., Kraff O. et al. Subjective acceptance of 7 tesla MRI for human imaging. Magn Reson Mater Physics, Biol Med. 2008;21:63. doi:10.1007/s10334-007-0095-x

Townsend D.W. Physical principles and technology of clinical PET imaging. Ann Acad Med Singap. 2004;33:133 – 145.

Tkachenko M., Korol P. Diagnostic parameters of bone scintigraphy for knee arthroplasty in patients with rheumatoid arthritis. East European Scientific Journal. 2016;10:38–39.

Veit-Haibach P., Kuhn F.P., Wiesinger F. et al. PET – MR imaging using a tri-modality PET/CT – MR system with a dedicated shuttle in clinical routine. Magn. Reson. Mater. Physics, Biol. Med. 2013;26:25 – 35. doi: 10.1007/s10334-012-0344-5

Vunckx K., Atre A., Baete K. et al. Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging. IEEE Trans Med Imaging. 2012;31:599 – 612.

Wagenknecht G., Kops E.R., Kaffanke J. et al. CT-based evaluation of segmented head regions for attenuation correction in MR-PET systems. IEEE Nucl. Sci. Symp. Conf. Rec. 2010;2793 – 2797. doi: 10.1007/s10334-012-0353-4

Walleczek J., Shiu E.C., Hahn G.M. Increase in radiation-induced HPRT gene mutation frequency after nonthermal exposure to nonionizing 60 Hz electromagnetic fields. Radiat Res. 1999;151:489 – 497.

Watanabe M., Okada H., Shimizu K. et al. A high resolution animal pet scanner using compact PS-PMT detectors. IEEE Trans Nucl Sci. 1997;44:1277 – 1282.

Weirich C., Brenner D., Scheins J. et al. Analysis and corre ction of count rate reduction during simultaneous MR-PET measurements with the BrainPET scanner. IEEE Trans Med Imaging. 2012;31:1372 – 1380.

Wollenweber S.D. Parameterization of a model-based 3-D PET scatter correction. IEEE Trans Nucl Sci. 2002;49:722 – 727.

Woody C., Schlyer D., Vaska P. et al. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph. Nucl. Instrum Methods Phys. Res. 2007;571:102 – 105.

Würslin C., Schmidt H., Martirosian P. et al. Respiratory motion correction inoncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J. Nucl. Med. Soc Nuclear Med. 2013;54:464 – 471. doi: 10.2967/jnumed.112.105296

Yamamoto S., Takamatsu S., Murayama H. et al. A block detector for a multislice, depth-of-interaction MR-compatible PET. IEEE Trans Nucl Sci. 2005;33 – 37.

Zaidi H., Hasegawa B. Determination of the attenuation map in emission tomography. J. Nucl. Med. Soc Nuclear Med. 2003;44:291 – 315.

Zaidi H., Ojha N., Morich M. et al. Design and performance evaluation of a whole-body ingenuity TF PET – MRI system. Phys Med Biol. 2011;56:3091. doi: 10.1088/0031-9155/56/10/013

Copyright (c) 2018 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2019


   Seo анализ сайта