DOI: https://doi.org/10.22141/1608-1706.6.19.2018.152218

Biomechanical computer modeling of “bone-fixator-endoprosthesis” system functioning after different types of internal hemipelvectomy

I.A. Lazarev, V.Yu. Kostiuk, A.G. Diedkov, M.V. Skiban

Abstract


Reconstructive surgical intervention after removing pelvic bone tumor remains a complex issue for modern orthopedic oncology. In order to substantiate the functioning of biomechanical system “bone-fixator-endoprosthesis” under load in different types of internal hemipelvectomy, a finite element analysis of stress-strain state was performed in four major variants of pelvic bone resection in patients with pelvic bone tumors. Based on axial scans of spiral computed tomography of the pelvis with proximal femur and hip endoprosthesis, using the Mimics software package, there was created the pelvis spatial geometry and 3D simulation models of different internal hemipelvectomy types by Enneking with defect reconstruction by spacer. Subsequent calculations were carried out using finite element method with calculation of stress-strain state by ANSYS package. The key indicators for the comparative analysis were selected data obtained by calculating the value of stress (by von Mises) and total deformations of the model. Biomechanical studies demonstrate the maximum reliability of hemipelvectomy type II. In all investigated models, the maximum stress is located under the head of screws and do not exceed the limits of strength, and minimal stress is located on distal parts of screws, so the length of the screws will not significantly affect the stability of construction. In all investigated models, the maximum stress on the beam was established in the places of contact with screws and minimal — in the middle part of the spacer, so the installation of the beam to join screw heads requires further investigation and correction of the reconstruction technique. The risk of instability or destruction of construction increases as a result of cyclic loads that is followed by an increase in stress-strain state and could be the basis for more accurate selection of optimal tactics of reconstructive surgery after tumor removal.


Keywords


опухоль тазовой кости; гемипельвэктомия; напряженно-деформированное состояние

References


Зациорский В.М. Биомеханика двигательного аппарата человека / В.М. Зациорский, А.С. Аруин, В.Н. Селуянов. — М.: Физкультура и спорт, 1981. — 143 с.

Напружено-деформований стан проксимального відділу стегнової кістки в умовах моделювання порожнинних кісткових дефектів в різних за навантаженням зонах / В.А. Філіпенко, З.М. Мітелева, В.О. Мезенцев, О.В. Яресько // Український морфологічний альманах. — 2006. — Т. 4, № 1. — С. 104-107.

Напружено-деформований стан проксимального відділу стегнової кістки з наявністю порожнистого дефекту (осередок фіброзної дисплазії) в умовах остеосинтезу різними типами фіксаторів / І.А. Лазарев, Ю.М. Гук, Ю.В. Олійник, М.В. Скибан // Травма. — 2015. — Т. 16, № 3. — С. 62-70.

Толстопятов Б.А. Диагностика и лечение первичных опухолей костей таза: Дис… д-ра мед. наук: 14.01.07 / Толстопятов Борис Аксентиевич. — К., 1980. — 358 с.

Філіпенко В.А. Метода кінцевих елементів в клінічній біомеханіці та прогнозування результатів пластики кісткових порожнин за допомогою різновидів кальцій-фосфатних керамік / В.А. Філіпенко, З.М. Мітелева, З.З. Зиман // Ортопедия, травматология и протезирование. — 2006. — № 2. — С. 34-41.

Bickels J. Overview of pelvic resections: surgical consi-derations and classification // Musculoskeletal Cancer Surgery / Bickels J., Malawer M. — Dordrecht: Springer, 2001. — Р. 203-213.

Development of finite element model for customized prostheses design for patient with pelvic bone tumor / T. Iqbal, L. Shi, L. Wang et al. // Proceedings of the Institution of Mechanical Engineers. Part H. Journal of engineering in medicine. — 2017. — V. 231, № 6. — Р. 525-533.

Kubichek М. Stress strain analysis of Knee joint / М. Kubichek, Z. Florian // Engineering Mechanics. — 2009. — V. 5, № 16. — Р. 315-322.

Maganaris C.N. In vivo human tendon mechanical pro-perties / C.N. Maganaris, J.P. Paul // Journal of Physiology. — 1990. — V. 521, № 1. — Р. 307-313.

One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection / K.C. Wong, S.M. Kumta, N.V. Geel, J. Demol // Journal Computer Aided Surgery. — 2015. — V. 20, № 1. — Р. 14-23.

Pelvic Resections / A. Mavrogenis, K. Soultanis, P. Patapis et al. // Orthopedics. — 2012. — V. 35. — Р. 232-243.

Reconstruction of thе hemipelvis after the excision of malignant tumors / A. Abudu, R.J. Grimmer, S.R. Cannon et al. // The Journal of Bone and Joint Surgery. — 1997. — V. 79. — Р. 773-779.

Yongwei J. Finite Element Analysis of Pelvic Reconstruction Using Fibular Transplantation Fixed with Rod-Screw System After Type I Resection / J. Yongwei // Chinese Medical Journal. — 2008. — V. 121, № 4. — Р. 321-326.




Copyright (c) 2018 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2019

 

   Seo анализ сайта