Osteoarthritis and gout: evidence of relationship and possible therapeutic interventions

I.Yu. Golovach, Ye.D. Yehudina


The review article presents new data on the potential relationship between the two most common rheumatic diseases and the possible role of uric acid in the pathogenesis of osteoarthritis (OA). OA is a degenerative joint disease that leads to pain, reduced quality of life and negative social and economic consequences. Gout is the most common form of inflammatory arthritis and is the result of persistently elevated levels of urates and deposition of pro-inflammatory crystals of sodium monourate in the joints. Similar localization, predisposing and genetic factors for both diseases has long been established. However, the relationship between these two nosologies has not yet been fully clarified, in particular, the effect of OA on the development of gout and the effect of gout on the development of OA. Traditional risk factors for OA lead to the initiation of cartilage damage and the production of pro-inflammatory mediators that contribute to inflammation. At the same time, the death of chondrocytes leads to the formation of urates, and if their concentrations are high enough, this may contribute to the deposition of crystals on cartilage at a macroscopic level, which can potentially lead to secondary mechanical damage to articular cartilage and contribute to the additional progression of OA. In conditions of hyperuricemia, synovial fluid with OA will have higher background levels of urates that can directly affect the local urate-mediated OA processes, increasing the likelihood of crystallization. The result will be a vicious cycle in which the progression of OA leads to the formation of urates, and the formation of urates contributes to the further progression of OA. Evidence of the relationship between gout and OA is given, with particular emphasis on the role of hyperuricemia in the presence or absence of gout. Studies that clarify the possible biochemical, mechanical and immunological relationships of these states are analyzed. The therapeutic options in the treatment of OA with the use of traditional urate-lowering drugs and colchicine are considered.


osteoarthritis; gout; hyperuricemia; uric acid; pathogenesis; relationship; review


Murphy L, Schwartz TA, Helmick CG, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 2008;59:1207–13. doi: 10.1002/art.24021.

Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil 2014;95: 986–95. doi: 10.1016/j.apmr.2013.10.032

GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1545–602. doi: 10.1016/S0140-6736(16)31678-6.

Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol 2016;68:1582–7. doi: 10.1002/art.39692.

GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1211–59. doi: 10.1016/S0140-6736(17)32154-2.

Zhu Y, Pandya BJ, Choi H. Prevalence of gout and hyperuricemia in the US General population: National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum 2011; 63: 3136–41. doi: 10.1002/art.30520.

Perez-Ruiz F, Dalbeth N, Bardin T. A review of crystal deposition disease, and gout. Adv Ther 2015; 32: 31–41. doi: 10.1007/s12325-014-0175-z

Chhana A, Dalbeth N. The gouty tophus: a review. Curr Rheumatol Rep 2015; 17: 19. doi: 10.1007/s11926-014-0492-x.

Golovach I. The metabolic phenotype of osteoarthritis: the dual role of obesity. Trauma. 2017; 18(5):87-93. doi:

Roddy E, Hyon Choi . Epidemiology of gout. Rheum Dis Clin North Am. 2014 May; 40(2): 155–175. doi: 10.1016/j.rdc.2014.01.001

Golovach I, Yehudina Ye. Posttraumatic osteoarthritis: contemporary views of development, progression and therapeutic approaches. Polytrauma. 2019;1:82-91.

Frallonardo P, Ramonda R, Peruzzo L, et al. Basic calcium phosphate and pyrophosphate crystals in early and late osteoarthritis: relationship with clinical indices and inflammation. Clin Rheumatol 2018;37(10):2847-2853. doi: 10.1007/s10067-018-4166-3

Zengini E, Hatzikotoulas K, Tachmazidou I, et al. Genome-wide analysis using UK Biobank data provide insights into the osteoarthritis. Nat Genet 2018; 50: 549– 558. doi: 10.1038/s41588-018-0079-y.

Roddy E, Zhang W, Doherty M. Are joints affected by gout also affected by osteoarthritis? Ann Rheum Dis 2007;66:1374–7. doi: 10.1136/ard.2006.063768

Dalbeth N, Aati O, Kalluru R, et al. Relationship between structural joint damage and urate deposition in gout: a plain radiography and dual-energy CT study. Ann Rheum Dis 2015;74:1030–6. doi: 10.1136/annrheumdis-2013-204273.

Muehleman C, Li J, Aigner T, et al. Association between crystals and cartilage degeneration in the ankle. J Rheumatol 2008; 35: 1108–17. PMCID:PMC6240447

Felson DT. Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther 2009; 11: 203. doi: 10.1186/ar2531

Golovach I. Osteoarthritis: fundamental and applied aspects of the etiopathogenesis of the disease. Nothing stands still. Ukrainian Journal of Rheumatology. 2014;2(56):4-11

Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 2013; 21:16–21. doi: 10.1016/j.joca.2012.11.012

Ea HK, Chobaz V, Nguyen C, et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 2013;8:e57352

Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41. DOI:10.1038/nature04516

Kuo CF, Grainge MJ, Mallen C, et al. Comorbidities in patients with gout prior to and the following diagnosis: case-control study. Ann Rheum Dis 2016; 75: 210–7. doi: 10.1136/annrheumdis-2014-206410

Ding X Zeng C, Wei J, et al. The associations of serum uric acid level and hyperuricemia with knee osteoarthritis. Rheumatol Int. 2016;36:567–73. doi: 10.1007/s00296-015-3418-7.

Howard RG, Samuels J, Gyftopoulos S, et al. Presence of gout is associated with increased prevalence and severity of knee osteoarthritis among older men:results of a pilot study. J Clin Rheumatol 2015; 21: 63–71. doi: 10.1097/RHU.0000000000000217

Teng GG, Leung YY, Ang LW, Yuan JM, Koh WP. Gout and risk of knee replacement for severe knee osteoarthritis in the Singapore Chinese Health Study. Osteoarthritis Cartilage 2017; 25: 1962–8. doi: 10.1016/j.joca.2017.07.017

Thiele RG, Schlesinger N. Diagnosis of ultrasound gout. Rheumatology (Oxford) 2007; 46: 1116–21. DOI:10.1093/rheumatology/kem058

Roddy E, Doherty M. Gout and osteoarthritis: a pathogenetic link? Joint Bone Spine 2012; 79: 425–7. doi: 10.1016/j.jbspin.2012.03.013

Pascual E, Addadi L, Andres M, Sivera F.Mechanisms of crystal formation in gout-a structural approach. Nat Rev Rheumatol 2015; 11: 725–30. doi: 10.1038/nrrheum.2015.125.

Yokose C, Chen M, Berhanu A, et al. Gout and osteoarthritis: associations, pathophysiology, and therapeutic implications. Curr Rheumatol Rep 2016; 18:65. DOI:10.1007/s11926-016-0613-9

Orlowsky EW, Stabler TV, Montell E, et al. Monosodium urate crystal-induced macrophage inflammation is attenuated by chondroitin sulphate: pre-clinical model for gout prophylaxis? BMC Musculoskelet Disord 2014; 15: 318 doi: 10.1186/1471-2474-15-318

Ding X, Zeng C, Wei J, et al. Uric acid level and associations hyperuricemia with knee osteoarthritis. Rheumatol Int 2016; 36: 567–73. doi: 0.1007/s00296-015-3418-7.

Attur M, Al-Mussawir HE, Patel J, et al. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. JImmunol 2008; 181: 5082–8.

Verma P, Dalal K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem 2011; 112: 3507–14. doi: 10.1002/jcb.23298

Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 2009; 17: 971–9. doi: 10.1016/j.joca.2009.03.002

Felson DT, McLaughlin S, Goggins J, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 2003; 139: 330–6.

Attur M, Statnikov A, Samuels J, et al. Plasma levels of interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee osteoarthritis. Osteoarthritis Cartilage 2015; 23: 1915–24. doi: 10.1016/j.joca.2015.08.006

Liu R, Liote F, Rose DM, et al. Proline-rich tyrosine kinase 2 and Src kinase signaling transduce monosodium urate of crystal-induced nitric oxide production and matrix metalloproteinase 3 expression in chondrocytes. Arthritis rheum 2004; 50: 247–58. DOI:10.1002/art.11486

Pretzel D, Pohlers D, Weinert S, Kinne RW In vitromodel for the analysis of synovial fibroblastmediated degradation of intact cartilage. Arthritis Res Ther.2009;11(1):R25. doi: 10.1186/ar2618

Siebuhr AS Bay-Jensen AC, Jordan JM, et al. Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment? Scand J Rheumatol. 2016;45(2):87–98. doi: 10.3109/03009742.2015.1060259

Denoble AE, Huffman KM, Stabler TV, et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A. 2011;108(5):2088–93. doi: 10.1073/pnas.1012743108.

Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 2000;43(9):1916–26. DOI:10.1002/1529-0131(200009)43:9<1916::AID-ANR2>3.0.CO;2-I

Hwang HS, Yang CM, Park SJ, Kim HA. Monosodium urate crystal-induced chondrocyte death via autophagic process. Int JMol Sci. 2015;16(12):29265–77. doi: 10.3390/ijms161226164.

Chhana A, Callon KE, Pool B et al. The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout. J Rheumatol. 2013;40(12): 2067–74. doi: 10.3899/jrheum.130708

Charlier E, Relic B, Deroyer C, et al. Insights on the molecular mechanisms of chondrocytes death in osteoarthritis. Int J Mol Sci 2016; 17. doi: 10.3390/ijms17122146.

Shi Y, Evans JE, Rock KL. Molecular identification of a signal the immune system to dying cells. Nature 2003; 425: 516–21 DOI: 10.1038/nature01991 .

Lai JH, Luo SF, Hung LF, et al. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci Rep 2017; 7: 2359. doi: 10.1038/s41598-017-02640-0

Neogi T, George J, Rekhraj S, et al. Are either or both hyperuricemia and xanthine oxidase directly toxic to the vasculature? A critical appraisal. Arthritis rheum. 2012; 64: 327–38. doi: 10.1002/art.33369

Krasnokutsky S, Oshinsky C, Attur M, et al. Serum urate levels predict joint space narrowing in non-gout patients with medial knee osteoarthritis. Arthritis Rheumatol 2017; 69: 1213–20. doi: 10.1002/art.40069

Sun Y, Brenner H, Sauerland S, Günther KP, Puhl W, Stürmer T. Serum uric acid and patterns of radiographic osteoarthritis—the Ulm Osteoarthritis Study. Scand J Rheumatol.2000;29(6):380–6

Gunther KP, Puhl W, Brenner H, Stürmer T. Clinical epidemiology of hip and knee joint arthroses: an overview of the results of the BUlm Osteoarthrosis Study. Z Rheumatol. 2002;61(3):244–9.

Ma CA, Leung YY. Exploring the Link between Uric Acid and Osteoarthritis. Front Med (Lausanne). 2017; 4: 225. doi: 10.3389/fmed.2017.00225

Wangkaew S, Kasitanon N, Hongsongkiat S, Tanasombat C, Sukittawut W, Louthrenoo W. A comparative study of serum and synovial fluid levels of uric acid between patients with gout and other arthritides. J Med Assoc Thai. 2014;97(7):679–85.

Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S. Colchicine: old and new. Am J Med. 2015;128(5):461–70. doi: 10.1016/j.amjmed.2014.12.010

Das SK,, Mishra K, Ramakrishnan S. et al. A randomized controlled trial to evaluate the slowacting symptom modifying effects of a regimen containing colchicine in a subset of patients with osteoarthritis of the knee. Osteoarthr Cartil. 2002;10(4):247–52. DOI:10.1053/joca.2002.0516

Aran S, Malekzadeh S, Seifirad S. A double-blind randomized controlled trial appraising the symptom-modifying effects of colchicine on osteoarthritis of the knee. Clin Exp Rheumatol. 2011;29(3):513–8. doi: 10.1186/s13063-015-0726-x.

Leung YY, Thumboo J, Wong BS, et al. Colchicine effectiveness in symptom and inflammation modification in knee osteoarthritis (COLKOA): study protocol for a randomized controlled trial. Trials. 2015;16:200. doi: 10.1186/s13063-015-0726-x.

Gasse P, Riteau N, Charron S, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 2009;179(10):903–13. doi: 10.1164/rccm.200808-1274OC

Aibibula Z Ailixiding M, Iwata M,et al.Xanthine oxidoreductase activation is implicated in the onset of metabolic arthritis. Biochem Biophys Res Commun. 2016;472(1):26–32. doi: 10.1016/j.bbrc.2016.02.039.

Copyright (c) 2019 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта