DOI: https://doi.org/10.22141/1608-1706.4.20.2019.178742

Prospects for the quantitative assessment of the results of single-photon emission computed tomography of the skeletal system (literature review)

P.O. Korol, A.V. Samokhin, M.M. Tkachenko

Abstract


The review of the literature examines the prospects for the quantitative assessment of the results of single-photon emission computed tomography (SPECT) of the skeletal system. Synthesis of functional information obtained using SPECT together with high resolution computed tomography allows you to effectively determine the pathological metabolism in the bones with the simultaneous assessment of coexisting structural changes. Indicators of the maximum standardized uptake value of the radiopharmaceutical and the peak standardized uptake value should be considered the most optimal parameters for the quantitative determination of the focal absorption of radiopharmaceutical. In the future, it is necessary to attract narrower subgroups of patients (for example, by age, height, weight, sex, etc.) that have specific conditions in order to create an appropriate evidence base. However, further technological improvements are needed to make the calculation of quantitative SPECT parameters, by determining the standardized uptake value, a part of normal medical practice.

Keywords


single-photon emission computed tomography; radiopharmaceutical; standardized uptake value; review

References


Al-Riyami K., Vöö S., Gnanasegaran G. et al. The role of bone SPECT/CT in patients with persistent or recurrent lumbar pain following lumbar spine stabilization surgery. Eur J Nucl Med Mol Imaging. 2018;73:968.

Armstrong A.J., Anand A., Edenbrandt L. et al. Phase 3 Assessment of the Automated Bone Scan Index as a Prognostic Imaging Biomarker of Overall Survival in Men With Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol. 2018;4(7):944-951.

Armstrong I.S., Hoffmann S.A. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT. Nucl Med Commun. 2016; 37(11):1212–1217.

Bailey D.L., Willowson K.P. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med. 2013;54:83–89.

Beck M., Sanders J.C., Ritt P. et al. Longitudinal analysis of bone metabolism using SPECT/CT and99mTc-diphosphono-propanedicarboxylic acid: comparison of visual and quantitative analysis. EJNMMI Res. 2016;6:60.

Beheshti M., Mottaghy F.M., Paycha F. et al. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging . 2015;42:1767–1777.

Buchbender C., Hartung-Knemeyer V., Forsting M. et al. Positron emission tomography (PET) attenuation correction artefacts in PET/CT and PET/MRI. Br J Radiol. 2013;86(1025):20120570.

Cachovan M., Vija A.H., Hornegger J. et al. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res. 2013;3:45.

Chicco A., Lin P., Som S. Assessment and correction of partial volume effect in SPECT/CT. J Intern Med. 2015;45.

Chirindel A., Alluri K.C., Tahari A.K. et al. Liver standardized uptake value corrected forlean body mass at FDG PET/CT: effect of FDG uptake time. Clin Nucl Med. 2015; 40:17–22.

Choi J., Kim J.W., Jeon T.J. et al. The 18F-FDG PET/CT response to radiotherapy for patients with spinal metastasis correlated with the clinical outcomes. Woloschak GE, editor. PLoS One. 2018;13:0204918.

De Laroche R., Simon E., Suignard N. et al. Clinical interest of quantitative bone SPECT-CT in the preoperative assessment of knee osteoarthritis. Medicine (Baltimore) 2018;97:11943.

Fonager R.F., Zacho H.D., Langkilde N.C. et al. Diagnostic test accuracy study of 18F-sodium fluoride PET/CT, 99mTc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer. Am J Nucl Med Mol Imaging. 2017;7:218–227.

Haraldsen A., Bluhme H., Røhl L. et al. Single photon emission computed tomography (SPECT) and SPECT/low-dose computerized tomography did not increase sensitivity or specificity compared to planar bone scintigraphy for detection of bone metastases in advanced breast cancer. Clin Physiol Funct Imaging. 2016;36(1):40–46.

Helyar V., Mohan H.K., Barwick T. et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging. 2010;37:706–713.

Hetzel M., Arslandemir C., König H-H. et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18:2206–2214.

Holman B.F., Cuplov V., Millner L. et al. Improved correction for the tissue fraction effect in lung PET/CT imaging. Phys Med Biol. 2015;60:7387–7402.

Huang S.C. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000;27:643–646.

Jarritt P.H., Whalley D.R., Skrypniuk J.V. et al. UK audit of single photon emission computed tomography reconstruction software using software generated phantoms. Nucl Med Commun. 2002;23:483–491.

Kaneta T., Ogawa M., Daisaki H. et al. SUV measurement of normal vertebrae using SPECT/CT with Tc-99m methylene diphosphonate. Am J Nucl Med Mol Imaging. 2016;6:262–268.

Korol P., Tkachenko M. The role of bone scintigraphy in differential diagnosis of knee inflammatory processes. Fundamental and applied sciences today. 2014;1:53-55. (in Ukrainian)

Kim J., Lee H-H., Kang Y. et al. Maximum standardised uptake value of quantitative bone SPECT/CT in patients with medial compartment osteoarthritis of the knee. Clin Radiol. 2017;72:580–589.

Kuji I., Yamane T., Seto A. et al. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer. European J Hybrid Imaging. 2017;1:1–16.

López Buitrago D.F., Ruiz Botero J., Corral C.M. Comparison of99mTc-MDP SPECT qualitative vs quantitative results in patients with suspected condylar hyperplasia. Rev Esp Med Nucl Imagen Mol. 2017;36:207–211.

Miyaji N., Miwa K., Motegi K. et al. Validation of cross-calibration schemes for quantitative bone SPECT/CT using different sources under various geometric conditions. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73(6):443–450.

Nakahara T., Daisaki H., Yamamoto Y. et al. Use of a digital phantom developed by QIBA for harmonizing SUVs obtained from the state-of-the-art SPECT/CT systems: a multicenter study. EJNMMI Res. 2017;7:53.

O'Mahoney E., Murray I. Evaluation of a matched filter resolution recovery reconstruction algorithm for SPECT-CTimaging. Nucl Med Commun. 2013;34(3):240–248.

Palmedo H., Marx C., Ebert A. et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67.

Sanderson T., Gear J.I., Murray I. et al. The impact of background ratios in calibration phantoms on the accuracy of dosimetry for Y-90 DOTATATE. Nucl Med Commun. 2015;36(5):512–547.

Schirrmeister H., Glatting G., Hetzel J. et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–1804.

Segall G., Delbeke D., Stabin M.G. et al. SNM practice guideline for sodium18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–1820.

Sher A., Lacoeuille F., Fosse P. et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [18F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6:21.

Stauss J., Hahn K., Mann M. et al. Guidelines for paediatric bone scanning with99mTc-labelled radiopharmaceuticals and18F-fluoride. Eur J Nucl Med Mol Imaging. 2010;37(8):1621–1628.

Stokke C., Gabiña P.M., Solný P. et al. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force. EJNMMI Phys. 2017;4:27.

Suh M.S., Lee W.W., Kim Y-K. et al. Maximum standardized uptake value of 99mTc hydroxymethylene diphosphonate SPECT/CT for the evaluation of temporomandibular joint disorder. Radiology. 2016;280(3):890–896.

Tkachenko M. The role of three/phase bone scintigraphy in arthroplasty of hip and knee joints of clean/up workers of Chornobyl accident / M. Tkachenko, P. Korol // Problems of radiation medicine and radiobiology. 2017;22:476-483. Ukrainian.

Tsujimoto M., Shirakawa S., Teramoto A. et al. Fluctuation of quantitative values on acquisition time and the reconstruction conditions in99mTc-SPECT. Nucl Med Commun. 2018;39:601–609.

Umeda T., Koizumi M., Fukai S. et al. Evaluation of bone metastatic burden by bone SPECT/CT in metastatic prostate cancer patients: defining threshold value for total bone uptake and assessment inradium-223 treated patients. Ann Nucl Med. 2018;32:105–113.

Van den Wyngaert T., Strobel K., Kampen W.U. et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43:1723–1738.

Wang R., Duan X., Shen C. et al. A retrospective study of SPECT/CT scans using SUV measurement of the normal pelvis with Tc-99m methylenediphosphonate. J Xray Sci Technol. 2018;26(6):895-908.

Yamane T., Kuji I., Seto A. Quantification of osteoblastic activity in epiphyseal growth plates by quantitative bone SPECT/CT. Skelet Radiol. 2018;47(6):805–810.

Zacho H.D., Biurrun Manresa J.A., Aleksyniene R. et al. Three-minute SPECT/CT is sufficient for the assessment of bone metastasis as add-on to planar bone scintigraphy: prospective head-to-head comparison to 11-min SPECT/CT. EJNMMI Res. 2017;7:1.




Copyright (c) 2019 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2019

 

   Seo анализ сайта