DOI: https://doi.org/10.22141/1608-1706.1.21.2020.197802

Calculation of the strength characteristics of a composite material based on polylactide, tricalcium phosphate and hydroxyapatite

O.N. Khvisyuk, O.D. Pavlov, M.Yu. Karpinsky, O.D. Karpinska

Abstract


Background. In orthopedics and traumatology, polymeric materials that are absorbed and dissolved in biological fluids are used more often to make screws and fixing pins, plates and anchors, cages. Among such materials, L-polylactic acid (L-polylactide) implants are more commonly used, their feature is biodegradation, osteointegration, the ability to induce bone formation and high biocompatibility with the body. The advantage of such implants is their complete resorption, which eliminates the need for surgery to remove the implant or locking device and, consequently, prevents tissue damage. It is possible to increase the quality of polylactide-based biomaterials by introducing ceramic materials, in particular tricalcium phosphate and hydroxyapatite, into their composition. However, implants with different percentages and composition of ceramic material differ in the properties of strength and behavior in the bone. Objective: to calculate the mechanical characteristics of a composite material based on polylactic acid tricalcium phosphate and hydroxyapatite and to choose its optimal composition for the manufacture of plates for osteosynthesis of long bones. Materials and methods. The elastic modulus of composite materials with different contents of ceramic components was calculated, and the geometric parameters of the plates for bone osteosynthesis from the selected composite material were determined to ensure the stability of bone fragments. Results. Material with a following percentage composition may be an optimal variant: polylactic acid — 70 %, tricalcium phosphate — 20 % and hydroxyapatite — 10 %. Such material does not require a significant increase in plate thickness, but retains sufficient flow properties for use in a 3D printer. To ensure rigidity of fixation of tibial fragments at the same level as when using titanium plate, plates made of a composite material based on polylactide, 20 % tricalcium phosphate and 10 % hydroxyapatite should be twice as thick as titanium one. Conclusions. An admixture of 20 % tricalcium phosphate and 10 % hydroxyapatite to polylactic acid can increase the elastic modulus of the material to 19.91 GPa. Pure polylactide plates are too soft and should be three times thicker than titanium plates to provide similar fixation rigidity. A composite material with an admixture of 20 % tricalcium phosphate and 10 % hydroxyapatite can reduce by 30 % the required plate thickness for lower leg osteosynthesis.


Keywords


composite material; polylactide; tricalcium phosphate; hydroxyapatite

References


Радченко В.А., Дедух Н.В., Малышкина С., Бенгус Л.М. Биорезорбируемые полимеры в ортопедии и травматологии. Ортопедия, травматология и протезирование. 2006. № 3. С. 116-124.

Kontakis G.M., Pagkalos J.E., Tosounidis T.I., Melissas J., Katonis P. Bioabsorbable materials in orthopaedics. Acta Orthop. Belg. 2007. Vol. 73. P. 159-169.

Терещенко В.П. Матрицы-носители в тканевой инженерии костной ткани. Успехи современного естество-знания. 2015. № 8. С. 66-70.

Корж Н.А., Радченко В.А., Кладченко Л.А., Малышкина C.В. Имплантационные материалы и остеогенез. Роль индукции и кондукции в остеогенезе. Ортопедия, травматология и протезирование. 2003. № 2. С. 150-15.

Семикозов О.В. Экспериментальное обоснование применения для костной пластики пористого минералонаполненного композита полилактида, подвергнутого воздействию сверхкритической среды СО#32#1: автореф. дис. на соискание науч. степени канд. мед. наук: спец. 14.00.16. О.В. Семикозов. ГОУВПО «Российский университет дружбы народов». Москва, 2008. 25 с. 29 ил.

Maharanaa T., Mohantyb B., Negi Y.S. Melt-solid polycondensation of lactic acid and its biodegradability. Progress in Polymer Science. 2009. № 34. P. 99-124.

Тумилович М.В., Савич В.В., Пилиневич Л.П. Пористые порошковые материалы и изделия на их основе для защиты здоровья человека и охраны окружающей среды: получение, свойства, применение. Минск: Белорусская наука, 2010. 367 с.

Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов. М.: Высшая школа, 2000. 560 с.

Продан А.И. Биомеханическое обоснование оптимального состава композитного материала для чрес-кожной вертебропластики. Хирургия позвоночника. 2006. № 2.

Карпинский М.Ю. Экспериментально-теоретическое обоснование состава композитного материала для заполнения костных дефектов. Медицина и ... 2008. № 3(21).




Copyright (c) 2020 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2020

 

   Seo анализ сайта