Biomechanical analysis of reliability of fragments fixation during the osteosynthesis of the proximal tibial fractures with LCP-plate and the intramedulary locking nail


  • I.A. Lazarev SI “Institute of Traumatology and Orthopedics of NAMS of Ukraine”, Kyiv, Ukraine,
  • E.E. Chip Emergency Room “Hlobynska CDH”, Hlobyno, Poltava Region, Ukraine,
  • A.V. Kalashnikov SI “Institute of Traumatology and Orthopedics of NAMS of Ukraine”, Kyiv, Ukraine,
  • M.V. Skiban SI “Institute of Traumatology and Orthopedics of NAMS of Ukraine”, Kyiv, Ukraine,



finite element modeling, fractures of the proximal tibia, stress-strain state, LCP-plate, intramedullary locking nail


Background. The proximal tibial fractures (PTF) amount for 5 % of all skeletal bone fractures and are often accompanied by da-mage to the important soft tissue structures and bone compression in the tibial plateau. The urgency of this issue is determined by the fact that the PTF is characterized by a high frequency of adverse functional results: often, in the distant period after the injury, the osteoarthritis, contractures, instability of the knee develop. According to some authors, the rate of the above complications ranges from 5.8 to 28 %, with the output of disability of 5.9–9.1 %. All these cause great medical and social significance of this problem, and determination of the most effective method of this pathology treatment is an urgent issue of modern traumatology. Materials and methods. At the initial stage, according to the anatomical models and CT scans, a solid 3D model of the tibia, which included elements tibia, fibula, intercostal membrane, ligaments of the proximal and tibiofibular ligament (fracture of the proximal tibia) is created in Solid Works software package. In the following, 4 variants of bone fragments osteosynthesis using LCP-plates and intramedullary locking nail were developed. At the next stage, the boundary conditions for fixing and loading the model with a bodyweight corresponding to the average bodyweight of 75 kg (750 H) were applied, and a finite element model was created, which numbered 381,787 knots and 206,583 elements. Results. More uniform stress distribution on all elements of the model occurs when applying the intramedullary locking nail (model 4), the stress on the metal parts, bone and ligament is less than the stress on the elements in models 1 and 2. The strain and total deformation values of the model 4 are also insignificant and less than the strain on the elements of model 1 and 2, which indicates sufficient stability of the fragments and the method of osteosynthesis as a whole. A similar situation was observed in the case of the use of LCP-plates in their bilateral application (model 3). Conclusions. The results of the study can further serve as a basis for the algorithm of the development of surgical treatment and rehabilitation of PTF patients.


Ахтямов И.Ф., Кривошапко Г.М., Кривошапко С.В. Послеоперационная реабилитация больных с внутрисуставными повреждениями коленного сустава и их последствиями (обзор литературы). Гений ортопедии. 2002. № 2. C. 150-155.

Боев В.Д., Сыпченко Р.П. Компьютерное моделирование. М.: ИНТУИТ.РУ, 2010. 349 с.

Гиршин С.Г. Клинические лекции по неотложной травматологии. М.: Азбука, 2004. 543 с.

Зациорский В.М., Аруин А.С., Селуянов В.И. Биомеханика двигательного аппарата человека. М.: Физкультура и спорт, 1981. 143 с.

Королев А.Л. Компьютерное моделирование. М.: Бином. Лаборатория знаний, 2010. 232 с.

Лапач С.Н., Чубенко А.В., Бабич П.Н. Статистические методы в биологических исследованиях с использованием Excel. К.: Морион, 2000. 320 с.

Мінцер О.П. Інформаційні технології в охороні здоров’я і практичній медицині: [у 10 кн.]: Оброблення клінічних і експериментальних даних у медицині: Навч. посіб. Кн. 5. К.: Вища школа, 2003. 350 с.

Гилев М.В., Волокитина Е.А., Антониади Ю.В., Черницын Д.Н. Новые подходы к лечению внутрисуставных переломов проксимального отдела большеберцовой кости. Уральский медицинский журнал. 2012. № 6. С. 121-127.

Мюллер М.Е., Альговер М., Шнайдер Р., Виллингер X.М. Руководство по внутреннему остеосинтезу. М.: Медицина, 1996. 750 с.

Patil S., Mahon A., Green S., McMurtry I., Port A. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures. Knee. 2006. Vol. 13. № 3. Р. 231-235.

Jiang R., Luo C.F., Wang M.C., Yang T.Y., Zeng B.F. A com-parative study of Less Invasive Stabilization System (LISS) fixation and two-incision double plating for the treatment of bicondylar tibial plateau fractures. Knee. 2008. Vol. 15. № 2. Р. 139-143.

Mohamed M., Khedr A., Zaki L., Khaled S., Balbaa A. Effect of introducing early weight bearing training in rehabilitating patient with tibial plateau fracture fixed with open reduction internal fixation. Bioscience Research. № 16(2). P. 1232-1242.

Haak K., Palm H., Holck K., Krasheninnikoff M., Gebuhr P., Troelsen A. Immediate weight-bearing after osteosynthesis of proximal tibial fractures may be allowed. Danish Medical Journal. 2012. № 59(10). P. 4515.

Kubichek М., Florian Z. Stress strain analysis of Knee joint. Engineering Mechanics. 2009. № 5(16). P. 315-322.

Miler K., Nielsen P.M.F. Computational biomechanics for medicine. Springer + Business Media, LLS, 2010. 155 p.





Original Researches