Features of the use of additive technologies in operative orthopaedics

Authors

  • A.N. Kosiakov Kiev Municipal Orthopedic Center of Replacement, Surgery and Rehabilitation, Kyiv City Clinical Hospital 12, Kyiv, Ukraine
  • A.Ye. Loskutov Dnipro State Medical University, Dnipro, Ukraine
  • K.A. Hrebennikov Kiev Municipal Orthopedic Center of Replacement, Surgery and Rehabilitation, Kyiv City Clinical Hospital 12, Kyiv, Ukraine
  • A.V. Miloserdov Kiev Municipal Orthopedic Center of Replacement, Surgery and Rehabilitation, Kyiv City Clinical Hospital 12, Kyiv, Ukraine
  • Ye.M. Fedin Kiev Municipal Orthopedic Center of Replacement, Surgery and Rehabilitation, Kyiv City Clinical Hospital 12, Kyiv, Ukraine
  • A.A. Haluzinskyi Laboratory of Biomedical Engineering, Kyiv, Ukraine
  • S.V. Burburskaia Laboratory of Biomedical Engineering, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/1608-1706.3.22.2021.236318

Keywords:

additive technologies, 3D planning and prototyping, joint replacement

Abstract

Background. Additive technologies are increasingly making their way from university laboratories and high-tech industries into routine clinical practice and even into our everyday lives. Any enthusiast, having a PC and a 3D printer at his or her disposal, can create any physical object — from children’s toys to works of art. The presence on the market of a wide range of software pro-ducts, equipment, and consumables along with the data from mo-dern diagnostic methods, a high level of training and cooperation between doctors and engineers provide practical medicine with unprecedented opportunities. We are finally able to fully customize our treatment and diagnostic procedures: to perform precise preoperative planning; to draw up a detailed plan of the operation; to rehearse the intervention on full-scale anatomical prototypes using a standard tool; to conduct the surgery as quickly and atraumatically as possible; to minimize risks; to ensure the optimal functional result and to manufacture and install customized implants in the most difficult cases. The purpose was to draw the attention of our distinguished colleagues to the aspects of application of additive technologies in modern orthopaedic practice, to introduce them into the history and current state of medical prototyping, as well as to share technological nuances with them. Materials and methods. While writing this article, we incorporated the data of recent publications in specialized domestic and foreign periodicals, several monographs, materials from thematic conferences, the results of informal conversations with colleagues in the operating rooms, at the computer and production site, as well as our own experience (over 200 cases of prototyping). Conclusions. The availability of equipment, software, and consumables allows for the introduction of additive technology into the everyday practice of nearly every modern orthopaedic and trauma clinic.

References

Bogner A., Jouneau P.-H., Thollet G., Basset D., Gaut-hier C. A history of scanning electron microscopy developments: Towards ‘‘wet-STEM’’ imaging. Micron. 2007. 38. P. 390-401.

Николаенко А.Н. Применение 3D-моделирования и трехмерной печати в хирургии: обзор литературы. Medline.ru. Хирургия. 2018. Т. 18.

Frame M. Rapid Prototyping in Orthopaedic Surgery: A ­User’s Guide. The Scientific World Journal. 2012. Vol. 2012. P. 1-7.

Косяков О.М., Гребенніков К.О., Милосердов А.В., Федін Є.М., Бурбурська С.В., Галузинський О.А., Ніколов М.О., Козей А.С. Спосіб інтегрованого тривимірного моделювання індивідуальних анатомічних структур. Патент України 135130; МПК G09B 23/28; A61B 34/10; А61В 5/055; А61В 34/20 (2006.01); B33Y 50/00; G16H 30/40 (2018.01); G06T 15/08 (2011.01); G06T 19/00; заявл. 09.04.2019, опубл. 10.06.2019. Бюл. № 11/2019.

Kim G.B. et al. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean Journal of Radiology. 2016. Vol. 17. № 2. P. 182.

Gillaspie E.A. et al. From 3-Dimensional Printingto 5-Dimensional Printing: Enhancing Thoracic Surgical Planningand Resectionof Complex Tumors. The Annalsof Thoracic Surgery. 2016. Vol. 101. № 5. P. 1958-1962.

Lantada A.D., Morgado P.L. Enhancing product deve-lopment through CT images, computer-aided design and rapid manufacturing: present capabilities, main applications and challenges. Theory and Applications of CT Imaging and Analysis. InTech, Rijeka, Croatia. 2011. Р. 269-290.

Torres K., Staśkiewicz G., Śnieżyński M., Drop A., Maciejewski R. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education. Folia Morphol. 2011. Vol. 70. № 1. Р. 1-4.

Hieu L.C., Zlatov N., Vander Sloten J. et al. Medical ra-pid prototyping applications and methods. Assem Autom. 2005. 25. Р. 284-292.

Eva Hnatkova, Petr Kratky and Zdenek Dvorak. Production of anatomical models via rapid prototyping. International Journal Of Circuits, Systems And Signal Processing. 2014. Vol. 8. Р. 479-486.

Cloonan A.J., Shahmirzadi D., Li R.X., Doyle B.J., Konofagou E.E., McGloughlin T.M. 3D-printed tissue-mimicking phantoms for medical imaging and computational validation applications 3D Print. Addit Manuf. 2014. № 1. Р. 14-23.

Wei-Hua A.Wang, Man-ChingLin. STL rapid prototy-ping bio-CAD model for CT medical image segmentation. Computers in Industry. 2010. Vol. 61. Is. 3. P. 187-197.

Хофер М. Компьютерная томография. Базовое руководство. 3-е издание, перераб. и доп. М.: Мед. лит., 2011. С. 9.

Currie S., Hoggard N., Craven I.J. et al. Understanding MRI: basic MR physics for physicians. Postgraduate Medical Journal. 2013. № 89. Р. 209-223.

Марусина М.Я., Казначеева А.О. Современные виды томографии: учебное пособие. СПб.: СПбГУ ИТМО, 2006. С. 20.

Kurenov S.N. et al. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. The Journal of Thoracic and Cardiovascular Surgery. 2015. Vol. 149. № 4. P. 973-979.

Rankin T.M. et al. Three-dimensional printing surgical instruments: are we there yet? Journal of Surgical Research. 2014. Vol. 189. № 2. P. 193-197.

James M. Duncan, Samuel Nahas, Kashif Akhtar, Jasvinder Daurka. The Use of a 3D Printer in Pre-operative Planning for a Patient Requiring Acetabular Reconstructive Surgery. Journal of Orthopaedic Case Reports. 2015. Vol. 5. P. 23-25.

Косяков А.Н., Гребенников К.А., Милосердов А.В., Федин Е.М. Применение пластины индивидуальной конструкции для остеосинтеза при эндопротезировании тазобедренного сустава у больной с застарелым невправленным трансацетабулярным переломом костей таза. Ортопедия, травматология и протезирование. 2019. № 1. С. 96-99.

Najiahai Jinsihan, Gele Jin. Recent developments of 3D-printing technique assisted surgery in the management of complex fractures. Int. J. Clin. Exp. Med. 2018. № 11 (11). P. 1578-11583.

Huang Z., Song W., Zhang Y., Zhang Q., Zhou D., Zhou X. et al. Three-dimensional printing model improves morphological understanding in acetabular fracture learning. A multicenter, randomized, controlled study. PLoS ONE. 2018. № 13 (1). https://doi.org/10.1371/journal.pone.0191328.

Lars Brouwers, Albert F. Pull ter Gunne, Mariska A.C. de Jongh, Frank H.W.M. van der Heijden, Luke P.H. Leenen, Willem R. Spanjersberg, Sven H. van Helden, Diederik O. Verbeek, Mike Bemelman, Koen W.W. Lansink. The Value of 3D Printed Models in Understanding Acetabular Fractures. 3D printing and additive manufacturing. 2018. Vol. 5. № 1. P. 37-45.

Филиппенко В.А., Танькут В.А., Маколинец В.И., Гращенкова Т.Н., Мезенцев В.А., Танькут А.В., Акрамов В.Р. Реабилитация пациентов после ревизионного эндопротезирования тазобедренного сустава. Літопис травматології та ортопедії. 2011. № 1-2. С. 270.

Тихилов Р.М., Шубняков И.И., Коваленко А.Н., Билык С.С., Цыбин А.В., Денисов А.О. Применение индивидуальной трехфланцевой конструкции при ревизионном эндопротезировании с нарушением целостности тазового кольца (клинический случай). Травматология и ортопедия России. 2016. № 1. С. 108-116.

Косяков А.Н., Гребенников К.А., Милосердов А.В., Федин Е.М., Нечай А.А. Возмещение костных дефектов вертлужной впадины с использованием аддитивных технологий. Вісник ортопедії, травматології та протезування. 2018. № 4. С. 64-74.

Кавалерский Г.М., Мурылев В.Ю., Рукин Я.А., Лычагин А.В., Елизаров П.М. Применение индивидуальных вертлужных компонентов при ревизионном эндопротезировании тазобедренного сустава. Травматология и ортопедия России. 2016. № 22 (4). Р. 114-121.

Корыткин А.А., Захарова Д.В., Новикова Я.С., Горбатов Р.О., Ковалдов К.А., Эль Мудни Ю.М. Опыт применения индивидуальных трехфланцевых вертлужных компонентов при ревизионном эндопротезировании тазобедренного сустава. Травматология и ортопедия России. 2017. № 23 (4). С. 101-111.

Andrew J. Hughes, Cathal DeBuitleir, Philip Soden, Brian O’Donnchadha, Anthony Tansey, Ali Abdulkarim, Colm McMahon, and Conor J. Hurson. 3D Printing Aids Acetabular Reconstruction in Complex Revision Hip Arthroplasty. Advan-ces in Orthopedics. Vol. 2017. Article ID 8925050. 7 p. http://dx.doi.org/10.1155/2017/8925050.

Hughes A., Soden P., Abdulkarim A., McMahon C., Hurson C. The use of rapid prototyping and 3d printing in revision hip arthroplasty. Orthopaedic Proceedings. Vol. 96-B, № SUPP 10.

Stefan Tserovski, Simona Georgieva, Radoil Simeonov, Amir Bigdeli, Heinz Röttinger, Plamen Kinov. Advantages and disadvantages of 3D printing for pre-operative planning of revision hip surgery. Journal of Surgical Case Reports. 2019. № 7. P. 1-4.

Коваленко А.Н., Шубняков И.И., Билык С.С., Тихилов Р.М. Современные технологии лечения тяжелых костных дефектов области вертлужной впадины: какие проблемы решают индивидуальные импланты? Политравма. 2017. № 1. С. 65-81.

Коваленко А.Н., Шубняков И.И., Билык С.С., Денисов А.О., Тихилов Р.М. Возможности современных технологий визуализации и моделирования в ортопедии и их роль в разработке индивидуальных конструкций в хирургии тазобедренного сустава. Вестник хирургии им. И.И. Грекова. 2016. Т. 175. № 4. С. 46-52.

Попович А.А., Суфияров В.Ш., Полозов И.А., Борисов Е.В., Масайло Д.В., Вопиловский П.Н. и др. Применение аддитивных технологий для изготовления индивидуальных компонентов эндопротеза тазобедренного сустава из титановых сплавов. Медицинская техника. 2016. № 3. С. 43-46.

Yuvraj A., Bassam A.M. Triflange Acetabular Cup for Severe Acetabular Bone Defect. Biomed J. Sci & Tech. Res. 2017. № 1 (6).

Berasi C.C., Berend K.R., Adams J.B., Ruh E.L., Lombardi A.V. Are custom triflange acetabular components effective for reconstruction of catastrophic bone loss? Clin. Orthop. Relat. Res. 2014. № 473 (2). Р. 528-535.

Goodman G.P., Engh C.A. The custom triflange cup: build it and they will come. Bone Jt. J. 2016. № 98 (1). Р. 68-72.

Hogan C., Ries M. Treatment of massive acetabular bone loss and pelvic discontinuity with a custom triflange component and ilio-sacral fixation based on preoperative CT templating. A report of 2 cases. Hip Int. 2015. № 25 (6). Р. 585-588.

Li H., QuX., MaoY., Dai K., Zhu Z. Custom Acetabular Cages Offer Stable fixation and Improved Hip Scores for Revision THA With Severe Bone Defects. Clin. Orthop. Relat. Res. 2015. № 474 (3). Р. 731-740.

Published

2021-07-19

Issue

Section

Original Researches