Osteointegration of polylactide-based implants

Authors

  • V.B. Makarov Municipal non-profit enterprise “City Clinical Hospital 16”, Dnipro, Ukraine, Ukraine
  • N.V. Dedukh SI “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • O.A. Nikolchenko SI “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine

DOI:

https://doi.org/10.22141/1608-1706.3.22.2021.236325

Keywords:

polylactide-based Ingeo™ Biopolymer 4032D, biodegradation, osteointegration, rats, femur, histology

Abstract

Background. Materials degrading after implantation into bone are in the field of actual vision of orthopediс surgeon. These materials include polylactides, which are the ideal material for creating bone implants in 3D-printer, especially implants of complex shapes and different sizes. The purpose of the study is to conduct a comparative analysis of bone remodeling under conditions of implantation of polylactide 3D-printed screws into metadiaphyseal and diaphyseal defects of the rat femur. Materials and methods. Comparative analysis of bone remodeling under conditions of implantation of polylactide Ingeo™ Biopolymer 4032D 3D-printed screws into the metadiaphyseal and diaphyseal defects of the rat femur for 15, 30, 90, 180 and 270 days are conducted. After implantation of polylactide, areas of bone with implants were examined by the histological method with the determination of the osteointegration index. Results. It was found that for all the study periods the implants kept their shape, were surrounded by bone tissue. The osseointegration index on the 270th day in metadiaphyseal and diaphyseal defects is 97.1 and 94.3 %, respectively, and is statistically higher compared to the 15th day by 2.2 and 2.3 times (p < 0.001). Conclusions. The polylactide-based Ingeo™ Biopolymer 4032D implants are biocompatible, have high osteointegration qualities, do not cause inflammation in the surrounding soft tissues and bone marrow, do not lead to destructive changes of the bone in the implantation sites. At the end of the study (270 days), the degradation of polylactide is not found, which makes it possible to use it for fixation or filling cavities in compact and spongy bones for a long time.

References

Агаджанян В.В., Пронских А.А., Демина В.А., Гомзяк В.И., Седуш Н.Г., Чвалун С.Н. Биодеградируемые имплантаты в ортопедии и травматологии. Наш первый опыт. Политравма. 2016. № 4. С. 85-93.

Автандилов Г.Г. Медицинская морфометрия. М.: Медицина, 1990. 381 c.

Дєдух Н.В., Нікольченко О.А., Макаров В.Б. Перебудова кістки навколо полілактиду, імплантованого у діафіз стегнової кістки. Вісник проблем біології і медицини. 2018. № 1(142). С. 275-9. DOI: 10.29254/2077-4214-2018-1-1-142-275-279.

Должиков А.А., Колпаков А.Я., Ярош А.Л., Молчанова А.С., Должикова И.Н. Гигантские клетки инородных тел и тканевые реакции на поверхности имплантатов. Курский научно-практический вестник «Человек и его здоровье». 2017. № 3. С. 86-94. DOI: http://dx.doi.org/10.21626/vestnik/2017-3/15.

Макаров В.Б., Дедух Н.В., Никольченко О.А. Остео­репарация вокруг полилактида, имплантированного в метадиафизарный отдел бедренной кости (экспериментальное исследование). Ортопедия, травматология и протезирование. 2018. № 2(611). С. 102-7. DOI: http:// dx.doi.org/10/15674/0030-598720182102-107.

Макєєв В.Ф., Черпак М.О. Застосування полімерних остеопластичних матеріалів у стоматології. Український стоматологічний альманах. 2013. № 1. С. 116-9.

Саркисов Д.С. Микроскопическая техника. М.: Медицина, 1996. 542 с.

Bohner M. Resorbable biomaterials as bone graft substitutes. Materials Today. 2010. Vol. 13(1–2). Р. 24-30. DOI: https://doi.org/10.1016/S1369-7021(10)70014-6.

Hamad K., Kaseem M., Yang H.W., Deri F., Ko Y.G. Properties and medical applications of polylactic acid: A review. eXPRESS Polymer Letters. 2015. Vol. 9(5). Р. 435-55. DOI: 10.3144/expresspolymlett.2015.42.

Kontakis G.M., Pagkalos J.E., Tosounidis T.I., Melissas J., Katonis P. Bioabsorbable materials in orthopaedics. Acta Orthop. Belg. 2007. Vol. 73(2). Р. 159-69.

Liu A., Xue G-h, Sun M., Shao H-f, Ma C-y, Gao Q., Gou Z-r, Yan S-g, Liu Y-m, HeY. 3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Sci. Rep. 2017. No 6(21704). Р. 1-13. DOI: 10.1038/srep21704.

Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014. Vol. 32(8). Р. 773-85. DOI: 10.1038/nbt.2958

Oh T-J, Yoon J., Misch C.E., Lau K. The Causes of Early Implant Bone Loss: Myth or Science? Journal of Periodontology. 2002. Vol. 73(3). Р. 322-33. DOI: 10.1902/jop.2002.73.3.322.

Schaschke C., Audic J.L. Editorial: Biodegradable materials. Int. J. Mol. Sci. 2014. Vol. 15. Р. 21468-75. DOI: 10.3390/ijms151121468.

Sheikh Z., Najeeb S., Khurshid Z., Verma V., Rashid H., Glogauer M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials. 2015. № 8. Р. 5744-94. DOI: 10.3390/ma8095273.

Steffi C., Shi Z., Kong C.H., Wang W. Modulation of Osteoclast Interactions with Orthopaedic Biomaterials. J. Funct. Biomater. 2018. Vol. 9(1). Р. 18. DOI: 10.3390/jfb9010018.

Published

2021-07-19

Issue

Section

To General Practitioner