Comparative analysis of stress-strain state of mathematical models for an individual endoprosthesis and allocomposite endoprosthesis in case of replacement of long bone defects

Authors

  • O.E. Vyrva State Institution “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • Ya.О. Golovina State Institution “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • R.V. Malik State Institution “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • M.Yu. Karpinsky State Institution “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • О.V. Yaresko State Institution “Sytenko Institute of Spine and Joint Pathology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine

DOI:

https://doi.org/10.22141/1608-1706.4.22.2021.239708

Keywords:

arthroplast, osteotomy, stress, load

Abstract

Background. Replacement of post-resection defects of long bones in case of a tumor process is always an urgent problem of orthopedics. Among the wide variety of materials and methods for reconstruction of post-resection defects of long bones, the most common are individual, modular arthroplasty and bioreconstructive interventions. To study the mechanical properties of the structures we have chosen, various types of post-resection femoral bone defect replacement were simulated using the finite element method. The purpose was to compare the data on stress-strain states in mathematical models “allocomposite endoprosthesis” and “individual endoprosthesis” of the proximal femur. Material and methods. Mathematical models of the femur with the formation of a post-resection proximal defect replaced by a segmental bone allograft in combination with an individual endoprosthesis have been created. The model is presented in two versions, with the formation of transverse and step-cut osteotomy. Each model was examined separately with cement and cementless attachment in the area of the endoprosthesis stem. For comparison, we chose a model with complete replacement of the proximal end of the femur with an individual endoprosthesis without bone grafting. Results. Femur step-cut osteotomy can significantly reduce the level of stress in the osteotomy area. This is due to the fact that performing the step-cut osteotomy allows the bone fragments to provide resistance to shearing movement. The use of bone cement can significantly reduce the level of stress around the stem of the endoprosthesis in both variants of femoral osteotomy (transverse and step-cut). This is due to the fact that bone cement, which has an elastic modulus at an intermediate value between titanium and bone tissue, forms a layer between them, performs a damper function, that smoothes the difference in deformation values of the metal and bone tissue, thereby reducing the level of stress in them. Arthroplasty without performing bone grafting leads to increased stresses in the bone tissue due to the presence of a rigid support on the cortical bone endoprosthesis in the diaphysis along the line of its resection. Conclusions. Performing step-cut osteotomy of the femur reduces the level of mechanical stresses in the osteotomy area by half compared to models with transverse osteotomy, which is of particular importance in the early postoperative stages. The use of bone cement for fixing the stem of the endoprosthesis can also significantly reduce the level of stress in all variants of the studied models, due to the formation of a damping layer between the metal and the bone tissue. The level of stress in models without bone grafting does not depend on the use of bone cement, but is determined by the presence of a rigid support of the endoprosthesis on the cortical bone along the line of its resection.

References

Gharedaghi M., Peivandi M.T., Mazloomi M. et al. Eva-luation of clinical results and complications of structural allograft reconstruction after bone tumor surgery. Arch. Bone Joint Surg. 2016. 4(3). 236-242.

Вирва О.Є., Головіна Я.О., Малик Р.В., Головіна О.О. Системний огляд і метааналіз результатів модульного й алокомпозитного ендопротезування за умов кістково-суглобових дефектів після резекції пухлини. Ортопедія, травматологія і протезування. 2020. 2. 5-15. DOI: 10.15674/0030-5987202025-15.

Bloebaum R.D., Merrell M., Gustke K., Simmons M. Retrieval analysis of a hydroxyapatite-coated hip prosthesis. Clin. Orthop. Relat. Res. 1991. 267. 97-102.

Calabró T., Van Rooyen R., Piraino I. et al. Reconstruction of the proximal femur with a modular resection prosthesis. Eur. J. Orthop. Surg. Traumatol. 2016. 26(4). 415-421. DOI: 10.1007/s00590-016-1764-0 [Epub 2016 Apr 4].

Sandoval P.P.G., Utrilla A.L., Trigueros-Rentero M.A., Lopez-Prats F.A. Mid- to long-term results of allograft-prosthesis composite reconstruction after removal of a distal femoral malignant tumor are comparable to those of the proximal tibia. Knee Surgery, Sports Traumatology, Arthroscopy. 2019. 27. 2218-2225. DOI: /10.1007/s00167-018-5110-4.

Capanna R., Donati I.X., Masctti C. et al. Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection: a double blind study. Clin. Orthop. Rclat. Res. 1994. 306. 213-221.

Blunn G.W., Briggs T.W., Cannon S.R. et al. Cementless fixation for primary segmental bone tumor endoprostheses. Clin. Orthop. 2000. 372. 223-230.

Capanna R., Morris H.G., Campanacci D. et al. Modular uncemented prosthetic reconstruction after resection of tumours of the distal femur. J. Bone Joint Surg. Br. 1994. 76. 178-186.

Головіна Я.О. Хірургічний етап лікування пацієнтів з метастатичними ураженнями довгих кісток: Дис. … канд. мед. наук: 14.01.21. Харків, 2013. 170 с.

Вырва О.Е., Головина Я.А., Малык Р.В. Аллокомпозитное эндопротезирование при хирургическом лечении пациентов со злокачественными опухолями длинных костей (обзор литературы). Ортопедия, травматология, протезирование. 2015. 2. 120-126.

Вирва О.Є., Головіна Я.О., Суббота Я.А. Заміщення післярезекційних дефектів стегнової кістки у лікуванні хворих з метастатичними ураженнями. Ортопедия, травматология и протезирование. 2013. 2. 73-79. DOI: 10.15674/0030-59872013273-79.

Вирва О.Є., Головіна Я.О., Карпінський М.Ю., Яресько О.В., Малик Р.В. Дослідження напружено-деформованого стану в системі «імплантат — кістка» на моделі алокомпозитного ендопротеза проксимального відділу стегнової кістки. Травма. 2020. 21(1). 38-48. DOI: 10.22141/1608-1706.1.21.2020.197797.

Benedetti M.G., Bonatti E., Malfitano C., Donati D. Comparison of allograft prosthetic composite reconstruction and modular prosthetic replacement in proximal femur bone tumors: functional assessment by gait analysis in 20 patients. Acta Orthop. 2013. 84(2). 218-223. DOI: 10.3109/17453674.2013.773119.

McGoveran B.M., Davis A.M., Gross A.E., Bell R.S. Evaluation of the allograftprosthesis composite technique for proximal femoral reconstruction after resection of a primary bone tumour. Can. J. Surg. 1999. 42(1). 3716.

Gere J.M., Timoshenko S.P. Mechanics of Material. Boston: PWS Publishing Company, 1997. 912 p.

Образцов И.Ф., Адамович И.С., Барер И.С. и др. Проблема прочности в биомеханике: Учебное пособие для техн. и биол. спец. вуз. М.: Высшая школа, 1988. 311 с.

Алямовский А.А. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М.: ДМК Пресс, 2004. 432 с.

Calabró T., Van Rooyen R., Piraino I. et al. Reconstruction of the proximal femur with a modular resection prosthesis. Eur. J. Orthop. Surg. Traumatol. 2016. 26(4). 415-421. DOI: 10.1007/s00590-016-1764-0 [Epub 2016 Apr 4].

Published

2021-09-17

Issue

Section

Original Researches