Post-Traumatic Osteoarthritis: Inflammatory, Cellular and Biochemical Mechanisms of Disease Progression

I.Yu. Holovach, I.M. Zazirnyi, I.P. Semeniv


Post-traumatic OA (PTOA) arises from joint injury, it accounts for a significant portion of patients with osteoarthritis. Intra-articular fractures associated with hemarthrosis, ruptures and rough damage to the meniscus, ligaments, cartilage injuries are the most common causes of PTOA. Damage to articular cartilage can occur in the period immediately after the injury, in the near future or develop several years after the injury. Even with appropriate treatment, such as rigid fixation of intra-articular fractures, reconstruction of damaged ligament with a successful restoration of joint biomechanics, the risk of PTOA ranges from 20 to more than 50 %. In the last decade, the role of inflammation in the development and progression of PTOA is being actively discussed and studied. Signs of inflammation may be observed in the joint fluid and tissues of patients with injuries of the joints and the risk of post-traumatic osteoarthritis. In addition, inflammatory mechanisms lead to the risk of developing osteoarthritis and its progression after injury. The development of PTOA involves molecular and cellular mechanisms. Synovium, articular cartilage and subchondral bone also react to the injury by changing metabolic activity and expression of inflammatory proteins. This review summarizes the results of recent studies of pathological mechanisms underlying PTOA development. This allows you to take a new look at the mechanisms of PTOA development, the role of inflammation in the progression of the disease, and to assess the limitations for early pharmacological intervention.


post-traumatic arthritis; joint injury; articular cartilage; inflammation; cytokines


Golovach I.Yu. Osteoarthrit: sovremennye fundamentalnie i prikladnye asperity pathogeneza zabolevaniya. Bol. Sustavy. Pozvonochnik. 2014; 3 (15): 54-58.

Kovalenko V.N., Bortkevych O.P. Osteoarthroz. Praktychna nastanova. – 3 vydannya zi zminamy. – K.: Morion, 2010. - 607 s.

Sinyachenko O.V. Sovremennye fspekty analiza sinovialnoj zhidkosti. Ukr. Revmatol. Zhurnal. 2008; 2 (32): 30-39.

Khitrov N.A. Osteoarthros I osteoarthrit – ot novykh vzglyadov na patogenez k novomu nazvaniyu. Meditsinskiy sovet. 2013; 4: 74-78.

Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis and Cartilage. 2013, 21: 16-21. doi: 10.1016/j.joca.2012.11.012.

Berenbaum F. Signaling transduction: target in osteoarthritis. Curr. Opin. Rheumatol. 2004; 16(5): 616-622.

Bijlsma J.W., Berenbaum F., Lafeber F.P. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011; 377: 2115-2126. doi: 10.1016/S0140-6736(11)60243-2.

Blewis M.E., Lao B.J., Schumacher B.L., Bugbee W.D., Sah R.L., Firestein G.S. Interactive cytokine regulation of synoviocyte lubricant secretion. Tissue Eng Part A 2010; 16: 1329-1337. doi: 10.1089/ten.TEA.2009.0210.

Brown T.D., Johnston R.C., Saltzman C.L., Marsh J.L., Buckwalter J.A. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma. 2006; 20: 739-744.

Buckwalter J.A. Articular cartilage: injuries and potential for healing. J. Orthop. Sports. Phys. Ther. 1998; 28: 192-202. doi: 10.2519/jospt.1998.28.4.192

Buckwalter J.A., Brown T.D. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin. Orthop. Relat. Res. 2004; 423: 7-16.

Buckwalter J.A., Mankin H.J., Grodzinsky A.J. Articular cartilage and osteoarthritis. Instr. Course Lect. 2005; 54: 465-480.

Cameron M.L., Fu F.H., Paessler H.H., Schneider M., Evans C.H. Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL-deficient knee. Knee Surg. Sports Traumatol. Arthrosc.1994; 2: 38-44.

Chalmers P.N., Mall N.A., Moric M., et al. Does ACL reconstruction alter natural history?: a systematic literature review of long-term outcomes. J Bone Joint Surg Am 2014; 96: 292-300. doi: 10.2106/JBJS.L.01713.

D'Lima D.D., Hashimoto S., Chen P.C., Colwell C.W.Jr., Lotz M.K. Impact of mechanical trauma on matrix and cells. Clin. Orthop. Relat. Res. 2001; 391 Suppl.: S90-99.

Elsaid K.A., Fleming B.C., Oksendahl H.L., et al. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. 2008; 58: 1707-1715. doi: 10.1002/art.23495.

Elsaid K.A., Machan J.T., Waller K., Fleming B.C., Jay G.D. The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum 2009; 60: 2997-3006. doi: 10.1002/art.24800.

Felson D.T. Osteoarthritis as a disease of mechanics. Osteoarthritis Cartilage. 2013; 21: 10-15. doi: 10.1016/j.joca.2012.09.012.

Fitzgerald J.B., Jin M., Dean D., Wood D.J., Zheng M.H., Grodzinsky A.J. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chem 2004; 279: 19502-19511. doi: 10.1074/jbc.M400437200

Grodzinsky A.J., Levenston M.E., Jin M., Frank E.H. Cartilage tissue remodeling in response to mechanical forces. Ann. Rev. Biomed. Eng. 2000; 2: 691-713. doi: 10.1146/annurev.bioeng.2.1.691

Guilak F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2011; 25(6): 815-823. doi: 10.1016/j.berh.2011.11.013.

Hayami T., Funaki H., Yaoeda K., et al. Expression of the cartilage derived antiangiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J. Rheumatol. 2003; 30: 2207-2217.

Inoue K., Masuko Hongo K., Okamoto M., Nishioka K. Induction of vascular endothelial growth factor and matrix metalloproteinase-3 (stromelysin) by interleukin-1 in human articular chondrocytes and synoviocytes. Rheumatol. Int. 2005; 26: 93-98.

Irie K., Uchiyama E., Iwaso H. Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. Knee. 2003; 10: 93-96. doi:

Kramer W.C., Hendricks K.J., Wang J. Pathogenetic mechanisms of posttraumatic osteoarthritis: opportunities for early intervention. Int. J. Clin. Exp. Med. 2011; 4(4): 285-298.

Kurz B., Jin M., Patwari P., Cheng D.M., Lark M.W., Grodzinsky A.J. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J. Orthop. Res. 2001; 19: 1140-1146. doi: 10.1016/S0736-0266(01)00033-X

Larsson S., Englund M., Struglics A., Lohmander L.S. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. Osteoarthritis Cartilage. 2015; 23(11): 1906-1914. doi: 10.1016/j.joca.2015.05.035.

Lee J.H., Fitzgerald J.B., Dimicco M.A., Grodzinsky A.J. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 2005; 52: 2386-2395. doi: 10.1002/art.21215

Lieberthal J., Sambamurthy N., Scanzello C.R. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2015; 23: 1825-1834. doi: 10.1016/j.joca.2015.08.015.

Marks P.H., Donaldson M.L. Inflammatory cytokine profiles associated with chondral damage in the anterior cruciate ligament-deficient knee. Arthroscopy. 2005; 21: 1342-1347. doi:

Martin J.A., Buckwalter J.A. Post-traumatic osteoarthritis: the role of stress induced chondrocyte damage. Biorheology. 2006; 43(3-4): 517-521.

Milentijevic D., Rubel I.F., Liew A.S., Helfet D.L., Torzilli P.A. An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage. J. Orthop. Trauma. 2005; 19: 466-473.

Mrosek E.H., Lahm A., Erggelet C., Uhl M., Kurz H., Eissner B., Schagemann J.C. Subchondral bone trauma causes cartilage matrix degeneration: an immunohistochemical analysis in a canine model. Osteoarthritis Cartilage 2006; 14: 171-178. doi:

Nielsen R.H., Stoop R., Leeming D.J., Stolina M., Qvist P., Christiansen C., Karsdal M.A. Evaluation of cartilage damage by measuring collagen degradation products in joint extracts in a traumatic model of osteoarthritis. Biomarkers. 2008; 13: 79-87. DOI:10.1080/13547500701615108

Olson S.A., Horne P., Furman B., Huebner J., Al-Rashid M, Kraus V.B., Guilak F. The role of cytokines in posttraumatic arthritis. J. Am. Acad. Orthop. Surg. 2014; 22(1): 29-37. doi: 10.5435/JAAOS-22-01-29.

Otsuki S., Brinson D.C., Creighton L., Kinoshita M., Sah R.L., D'Lima D., Lotz M. The effect of glycosaminoglycan loss on chondrocyte viability: a study on porcine cartilage explants. Arthritis Rheum 2008; 58: 1076-1085. doi: 10.1002/art.23381.

Paradowski P.T., Lohmander L.S., Englund M. Osteoarthritis of the knee after meniscal resection: long term radiographic evaluation of disease progression. Osteoarthritis Cartilage. 2015; 24: 1424-1417. doi: 10.1016/j.joca.2015.12.002.

Polur I., Lee P.L., Servais J.M., Xu L., Li Y. Role of HTRA1, a serine protease, in the progression of articular cartilage degeneration. Histol. Histopathol. 2010; 25: 599-608.

Sanchez C., Pesesse L., Gabay O., et al. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum. 2012; 64(4): 1193-1203. doi: 10.1002/art.33445.

Sward P., Frobell R., Englund M., Roos H., Struglics A. Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis) - a cross-sectional analysis. Osteoarthritis Cartilage 2012; 20: 1302-1308. doi: 10.1016/j.joca.2012.07.021.

Szczodry M., Coyle C.H., Kramer S.J., Smolinski P., Chu C.R. Progressive chondrocyte death after impact injury indicates a need for chondroprotective therapy. Am. J. Sports. Med. 2009; 37: 2318-2322. doi: 10.1177/0363546509348840.

van Meegeren M.E., Roosendaal G., Jansen N.W., et al. IL-4 alone and in сombination with IL-10 protects against blood-induced cartilage damage. Osteoarthritis Cartilage.2012; 20:.764-772. doi: 10.1016/j.joca.2012.04.002.

Vrahas M.S., Mithoefer K., Joseph D. The long-term effects of articular impaction. Clin. Orthop. Relat. Res. 2004; 423: 40-43.

Wei L., Fleming B.C., Sun X., et al. Comparison of differential biomarkers of osteoarthritis with and without posttraumatic injury in the Hartley guinea pig model. J. Orthop. Res. 2010; 28: 900-906. doi: 10.1002/jor.21093.

Copyright (c) 2016 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта