Crystal-Induced Osteoarthritis: the Role of Basic Calcium Phosphate Crystals

I.Yu. Golovach


Basic calcium phosphate crystals have long been associated with the pathogenesis of osteoarthritis. Basic calcium phosphate crystals are frequently determined in the synovial fluid and articular cartilage in this disease. While deposition of basic calcium phosphate crystals has been considered by many scientists as a consequence of advanced osteoarthritis, there is substantial evidence that basic calcium phosphate crystals may be active pathogenic mediators of osteoarthritis. «Basic calcium phosphate crystals» — a general term used to describe several types of calcium phosphates, including carbonate-apatite, hydroxyapatite, tri- and octacalcium phosphate, magnesium whitlockite crystals. Basic calcium phosphate crystals are pathogenetically associated with osteoarthritis, calcifying tendinitis, acute crystal arthritis and atherosclerosis. Crystals of calcium are detected in the synovial fluid in 65 % of cases of knee osteoarthritis, they are frequently found in hyaline cartilage in osteoarthritis, as well as in 100 % of patients in articular cartilage during total hip replacement surgery. Basic calcium phosphate crystals have also been found in the synovial fluid and synovial membrane of patients with mild, moderate and severe involvement of knee joint during arthroscopy. Basic calcium phosphate crystals demonstrate a multiplicity of biologic effects in vitro, including the ability to stimulate mitogenesis, the production of prostaglandins, cytokines, and matrix metalloproteinase in a number of cell types, including synoviocytes, chondrocytes and macrophages. Basic calcium phosphate crystals also contribute to inflammation in osteoarthritis through a direct interaction with the innate immune system. The present review discusses the recent advances in this field and attempts to summarize our current understanding of the role of basic calcium phosphate crystals in osteoarthritis pathogenesis. Views on the role of basic calcium phosphate crystals in the pathogenesis of osteoarthritis continue to expand, but today there is ample of experimental and clinical evidence of the critical role of calcium-containing crystals in the development of this disease, and progressive degeneration of the articular cartilage.


osteoarthritis; basic calcium phosphate crystals; crystal-induced osteoarthritis; pathogenesis; inflammation


Годзенко А.А. Артропатия, связанная с отложением основных фосфатов кальция // Российский медицинский журнал. 2007; 8: 673-676.

Головач И.Ю. Остеоартрит: фундаментальные и прикладные аспекты этиопатогенеза заболевания. Ничего не стоит на месте // Укр. ревматол. журнал. 2014; 2(56): 4-11.

Дубиков А.И., Кабалык М.А., Перикеева Т.Ю. и др. Феномен микрокристаллизации хряща при коксартрозе и асептическом некрозе головки бедренной кости // Научно-практ. ревматология. 2012; 5(54): 37-41.

Носкова Т.С., Широкова К.Ю., Бахтиярова Т.И., Филимонова Н.С. Болезни отложения кристаллов кальция: клиника и лечение // Клиническая геронтология. 2012; 18 (3–4): 59-63.

Bougualt C., Gosset M., Houdard X. et al. Stress induced cartilage degradation does not depend on the NLRP3 inflаmmasome in human osteoarthritis and mouse mo-dels // Arthritis Rheum. 2012; 64: 3972-3981; doi: 10.1002/art.34678.

Chang C.-C., Tsai Y.-H., Liu Y. et al. Calcium-containing crystals enhance receptor activator of nuclear factor kB ligand/macrophage colony-stimulating factor-mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways // Rheumatology. 2015; 54: 1913-1922; doi: 10.1093/rheumatology/kev107.

Cheung H.S., Story M.T., McCarty D.J. Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells // Arthritis Rheum. 1984; 27(6): 668-674. PMID: 6329235

Cheung H.S., Devine T.R., Hubbard W. Calcium phosphate particle induction of metalloproteinase and mitogenesis: effect of particle sizes // Osteoarthritis Cartilage. 1997; 5(3): 145-151; doi: 10.1016/S1063-4584(97)80009-X.

Dieppe P., Doherty M., Macfarlane D. Crystal-related arthropathies // Ann. Rheum. Dis. 1983; 42(1): 1-4. PMID: 6615024. PMCID: PMC1035030.

Durcan L., Bolster F., Kavanagh E.C., McCarthy G.M. The structural consequences of calcium crystal deposition // Rheum. Dis. Clin. North Am. 2014; 40: 311-328; doi: 10.1016/j.rdc.2014.01.007

Ea H.-K., Richette P., Liote F. Microcristaux calciques et arthrose // L’atualite rhumatologique / Kahn M.-F., Bardin T., Meyer O. et al., eds. Paris: Elsevier Masson; 2013: 259-268.

Ea H.-K., Chobaz V., Nguyen C. et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies // PLoS One. 2013; 8(2): e57352; doi: 10.1371/journal.pone.0057352.

Fuerst M., Bertrand J., Lammers L. et al. Calcification of articular cartilage in human osteoarthritis // Arthritis Rheum. 2009; 60: 2694-2703; doi: 10.1002/art.24774.

Gordon G., Villaneuva T., Schumacher H., Gohel V. Autopsy study correlating degree of osteoarthritis, synovitis and evidence of articular calcification // J. Rheumatol. 1983; 11: 681-686. PMID: 6096542

Liote F., Ea H.-K. Clinical implications of pathogenic calcium crystals // Curr. Opin. Rheumatol. 2014; 26 (2): 192-196; doi: 10.1097/BOR.0000000000000038.

Livshits G., Zhai G., Hart D.J. et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford Study // Arthritis Rheum. 2009; 60: 2037-2045; doi: 10.1002/art.24598.

Loeser R.F., Goldring S.R., Scanzello C.R., Goldring M.B. Osteoarthritis: a disease of the joint as an organ // Arthritis Rheum. 2012; 64: 1697-1707; doi: 10.1002/art.34453.

McCarthy G.M. et al. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes // Ann. Rheum. Dis. 2001; 60(4): 399-406. PMID: 11247873. PMCID: PMC1753595

McCarty D.J., Halverson P.B., Carrera G.F. et al. Milwaukee shoulder — association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects // Arthritis Rheum. 1981; 24: 464-473. PMID: 6260120

Murphy С.-L., McCarthy G.M. Why basic calcium phosphate crystals should be targeted in the treatment of osteoarthritis // EMJ Rheumatol. 2014; 1: 96-102.

Nalbant S., Martinez J.A., Kitumnuaypong T. et al. Synovial fluid features and their relations to osteoarthritis seve-rity: new findings from sequential studies // Osteoarthritis Cartilage. 2003; 11: 50-54. PMID: 12505487

Nasi S., So A., Combes C. et al. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis // Ann. Rheum. Dis. 2016; 75(7): 1372-1379; doi: 10.1136/annrheumdis-2015-207487.

Rosenthal A.K. Crystals, inflammation, and osteoarthritis // Curr. Opin. Rheumatol. 2011; 23(2): 170-173; doi: 10.1097/BOR.0b013e3283432d1f.

Ryu J.-H., Yang S., Shin Y. et al. Interleukin-6 plays an essential role in hypoxiainducible factor 2a-induced experimental osteoarthritic cartilage destruction in mice // Arthritis Rheum. 2011; 63: 2732-2743; doi: 10.1002/art.30451.

Saito I., Koshino T., Nakashima K. et al. Increased cellular infiltrate in inflammatory synovia of osteoarthritic knees // Osteoarthritis Cartilage. 2002; 10: 156-162; doi: 10.1053/joca.2001.0494

Stack J., McCarthy G. Basic calcium phosphate crystals and osteoarthritis pathogenesis: novel pathways and potential targets // Curr. Opin. Rheumatol. 2016; 28 (2): 122-126; doi: 10.1097/BOR.0000000000000245.

Sun Y., Mauerhan D.R., Franklin A.M. et al. Fibroblast-like synoviocytes induce calcium mineral formation and deposition // Arthritis. 2014; 2014: 812678; doi: org/10.1155/2014/812678

Sun Y., Mauerhan D.R., Honeycutt P.R. et al. Сalcium deposition in osteoarthritic meniscus and meniscal cell culture // Arthritis Res. Ther. 2010; 12(2): R56; doi: 10.1186/ar2968.

Suzuki M., Hashizume M., Yoshida H. et al. IL-6 and IL-1 synergistically enhanced the production of MMPs from synovial cells by up-regulating IL-6 production and IL-1 receptor I expression // Cytokine. 2010; 51: 178-183; doi: 10.1016/j.cyto.2010.03.017.

Thouverey C., Bechkoff G., Pikula S., Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesi-cles // Osteoarthritis Cartilage. 2009; 17(1): 64-72; doi: 10.1016/j.joca.2008.05.020.

Copyright (c) 2016 TRAUMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта